Spaces:
Sleeping
Sleeping
Commit
·
28ff814
1
Parent(s):
6083539
implement NegaBot model for tweet sentiment classification with logging and prediction capabilities
Browse files
model.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NegaBot Model - Tweet Sentiment Classification
|
3 |
+
Uses the SmolLM 360M V2 model for product criticism detection
|
4 |
+
"""
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
import torch
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class NegaBotModel:
|
14 |
+
def __init__(self, model_name="jatinmehra/NegaBot-Product-Criticism-Catcher"):
|
15 |
+
"""
|
16 |
+
Initialize the NegaBot model for sentiment classification
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model_name (str): HuggingFace model identifier
|
20 |
+
"""
|
21 |
+
self.model_name = model_name
|
22 |
+
self.model = None
|
23 |
+
self.tokenizer = None
|
24 |
+
self.load_model()
|
25 |
+
|
26 |
+
def load_model(self):
|
27 |
+
"""Load the model and tokenizer from HuggingFace"""
|
28 |
+
try:
|
29 |
+
logger.info(f"Loading model: {self.model_name}")
|
30 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
32 |
+
|
33 |
+
# Set model to evaluation mode
|
34 |
+
self.model.eval()
|
35 |
+
logger.info("Model loaded successfully")
|
36 |
+
|
37 |
+
except Exception as e:
|
38 |
+
logger.error(f"Error loading model: {str(e)}")
|
39 |
+
raise e
|
40 |
+
|
41 |
+
def predict(self, text: str) -> dict:
|
42 |
+
"""
|
43 |
+
Predict sentiment for a given text
|
44 |
+
|
45 |
+
Args:
|
46 |
+
text (str): Input text to classify
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
dict: Prediction result with sentiment and confidence
|
50 |
+
"""
|
51 |
+
try:
|
52 |
+
# Tokenize input text
|
53 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
54 |
+
|
55 |
+
# Get model predictions
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = self.model(**inputs)
|
58 |
+
logits = outputs.logits
|
59 |
+
|
60 |
+
# Apply softmax to get probabilities
|
61 |
+
probabilities = torch.softmax(logits, dim=1)
|
62 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
63 |
+
confidence = probabilities[0][predicted_class].item()
|
64 |
+
|
65 |
+
# Map prediction to sentiment
|
66 |
+
sentiment = "Negative" if predicted_class == 1 else "Positive"
|
67 |
+
|
68 |
+
return {
|
69 |
+
"text": text,
|
70 |
+
"sentiment": sentiment,
|
71 |
+
"confidence": round(confidence, 4),
|
72 |
+
"predicted_class": predicted_class,
|
73 |
+
"probabilities": {
|
74 |
+
"positive": round(probabilities[0][0].item(), 4),
|
75 |
+
"negative": round(probabilities[0][1].item(), 4)
|
76 |
+
}
|
77 |
+
}
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(f"Error during prediction: {str(e)}")
|
81 |
+
raise e
|
82 |
+
|
83 |
+
def batch_predict(self, texts: list) -> list:
|
84 |
+
"""
|
85 |
+
Predict sentiment for multiple texts
|
86 |
+
|
87 |
+
Args:
|
88 |
+
texts (list): List of texts to classify
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
list: List of prediction results
|
92 |
+
"""
|
93 |
+
results = []
|
94 |
+
for text in texts:
|
95 |
+
results.append(self.predict(text))
|
96 |
+
return results
|
97 |
+
|
98 |
+
# Global model instance (singleton pattern)
|
99 |
+
_model_instance = None
|
100 |
+
|
101 |
+
def get_model():
|
102 |
+
"""Get the global model instance"""
|
103 |
+
global _model_instance
|
104 |
+
if _model_instance is None:
|
105 |
+
_model_instance = NegaBotModel()
|
106 |
+
return _model_instance
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
# Test the model
|
110 |
+
model = NegaBotModel()
|
111 |
+
|
112 |
+
test_texts = [
|
113 |
+
"This product is awful and broke within a week!",
|
114 |
+
"Amazing quality, highly recommend this product!",
|
115 |
+
"The service was okay, nothing special.",
|
116 |
+
"Terrible customer support, waste of money!"
|
117 |
+
]
|
118 |
+
|
119 |
+
print("Testing NegaBot Model:")
|
120 |
+
print("=" * 50)
|
121 |
+
|
122 |
+
for text in test_texts:
|
123 |
+
result = model.predict(text)
|
124 |
+
print(f"Text: {text}")
|
125 |
+
print(f"Sentiment: {result['sentiment']} (Confidence: {result['confidence']:.2%})")
|
126 |
+
print("-" * 30)
|