import streamlit as st from langchain_groq import ChatGroq from langchain.chains import LLMMathChain, LLMChain from langchain.prompts import PromptTemplate from langchain_community.utilities import WikipediaAPIWrapper from langchain.agents.agent_types import AgentType from langchain.agents import Tool, initialize_agent from langchain.callbacks import StreamlitCallbackHandler import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Streamlit page configuration st.set_page_config( page_title="AI Math Problem Solver & Research Assistant", page_icon="🧮", layout="wide" ) # Custom CSS styling st.markdown(""" """, unsafe_allow_html=True) # App Header col1, col2, col3 = st.columns([1,6,1]) with col2: st.title("🧮 AI Math Problem Solver & Research Assistant") st.markdown("""

Powered by Google Gemma 2 AI, this assistant can help you solve math problems, provide detailed explanations, and search for additional information.

""", unsafe_allow_html=True) # API Key Check groq_api_key = os.getenv("GROQ_API_KEY") if not groq_api_key: st.error("⚠️ Please add your Groq API key to continue") st.stop() # Initialize LLM llm = ChatGroq(model="gemma2-9b-it", groq_api_key=groq_api_key) # Tool Setup wikipedia_wrapper = WikipediaAPIWrapper() wikipedia_tool = Tool( name="Wikipedia", func=wikipedia_wrapper.run, description="A tool for searching the Internet to find various information on the topics mentioned" ) def safe_calculator(expression: str) -> str: try: # Clean and validate the expression if any(char in expression for char in ['∫', '∂', '∑']): return "I apologize, but I cannot directly solve calculus problems or complex mathematical expressions. I can help explain the steps to solve it though!" # Use the math chain result = math_chain.run(expression) return result except Exception as e: return f"I encountered an error trying to solve this mathematically. Let me help explain the steps to solve it instead." math_chain = LLMMathChain.from_llm(llm=llm,verbose=True,input_key="question",output_key="answer") calculator = Tool( name="Calculator", func=safe_calculator, description="A tool for solving basic mathematical expressions. For complex math, it will provide step-by-step explanations" ) prompt = """ You're a helpful math tutor tasked with solving mathematical questions. For each problem: 1. First determine if it's a basic arithmetic problem or a more complex mathematical problem 2. For basic arithmetic, use the calculator tool 3. For complex math (calculus, integrals, differential equations), explain the solution steps clearly 4. Always show your work and explain each step Question: {question} Let me solve this step by step: """ prompt_template = PromptTemplate( input_variables=["question"], template=prompt ) chain = LLMChain(llm=llm, prompt=prompt_template) reasoning_tool = Tool( name="Reasoning tool", func=chain.run, description="A tool for answering logic-based and reasoning questions." ) # Initialize Agent assistant_agent = initialize_agent( tools=[wikipedia_tool, calculator, reasoning_tool], llm=llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False, handle_parsing_errors=True ) # Chat History if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "👋 Hi! I'm your Math Assistant. I can help you solve math problems and provide detailed explanations."} ] # Display Chat History for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.write(msg["content"]) # Input Section st.markdown("### 📝 Your Question") question = st.text_area( label="Enter your question:", value="I have 5 bananas and 7 grapes. I eat 2 bananas and give away 3 grapes. Then I buy a dozen apples and 2 packs of blueberries. Each pack of blueberries contains 25 berries. How many total pieces of fruit do I have at the end?", label_visibility="collapsed", height=100 ) # Create two columns for button centering col1, col2, col3 = st.columns([2,1,2]) with col2: solve_button = st.button("🔍 Solve Problem") if solve_button: if question: with st.spinner("🤔 Thinking..."): st.session_state.messages.append({"role": "user", "content": question}) with st.chat_message("user"): st.write(question) st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) response = assistant_agent.run(st.session_state.messages, callbacks=[st_cb]) st.session_state.messages.append({"role": "assistant", "content": response}) st.markdown("### 💡 Solution:") with st.chat_message("assistant"): st.success(response) else: st.warning("⚠️ Please enter your question first!") # Footer st.markdown("""

Made with ❤️ using Streamlit and Google Gemma 2

""", unsafe_allow_html=True)