jarif's picture
Update app.py
1c1ac31 verified
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
model = torch.hub.load('pytorch/vision:v0.10.0', 'inception_v3', pretrained=True)
n_classes = 10
model.fc = nn.Linear(model.fc.in_features, n_classes)
model = model.to(device)
model.load_state_dict(torch.load("NumtaDB_Classifier_Model.pth", map_location=device))
model.eval()
transform = transforms.Compose([
transforms.Resize((299, 299)),
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
label_name = ["Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Nine", "Ten"]
def predict(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(image_tensor)
probs = torch.softmax(outputs, dim=1)
predictions = {label_name[i]: float(probs[0][i]) for i in range(len(label_name))}
return predictions
iface = gr.Interface(
fn=predict,
inputs=gr.Image(label="Upload Image"),
outputs=gr.Label(num_top_classes=len(label_name)),
title="BanglaDigitPro: Advanced Bengali Numeral Recognition",
description="Upload an image of a handwritten Bangla digit to classify it.",
examples=[["example_1.png"], ["example_2.png"], ["example_3.png"], ["example_4.png"], ["example_5.png"]])
iface.launch(share=True)