Spaces:
Running
Running
update
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import logging
|
|
|
2 |
import pathlib
|
|
|
3 |
from typing import List, Optional
|
4 |
|
5 |
-
from rdkit import Chem
|
6 |
-
from tqdm import tqdm
|
7 |
import gradio as gr
|
8 |
-
from submission import submission
|
9 |
import pandas as pd
|
|
|
|
|
|
|
10 |
from configuration import GENE_EXPRESSION_METADATA
|
|
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
13 |
logger.addHandler(logging.NullHandler())
|
@@ -26,13 +29,16 @@ def run_inference(
|
|
26 |
omic_path: Optional[str],
|
27 |
confidence: bool,
|
28 |
):
|
|
|
|
|
|
|
29 |
# Read SMILES
|
30 |
if not isinstance(smiles_path, (str, type(None))):
|
31 |
raise TypeError(
|
32 |
f"SMILES file pass has to be None or str, not {type(smiles_path)}"
|
33 |
)
|
34 |
if smiles is None and smiles_path is None:
|
35 |
-
raise TypeError(
|
36 |
elif smiles is not None:
|
37 |
smiles = [smiles]
|
38 |
elif smiles_path is not None:
|
@@ -70,13 +76,11 @@ def run_inference(
|
|
70 |
results[f"epistemic_confidence_{smi}"] = (
|
71 |
result["aleatoric_confidence"].squeeze().round(3)
|
72 |
)
|
73 |
-
print(results)
|
74 |
predicted_df = pd.DataFrame(results)
|
75 |
|
76 |
# Prepare DF to visualize
|
77 |
if omic_path is None:
|
78 |
-
df = GENE_EXPRESSION_METADATA
|
79 |
-
print(df.columns)
|
80 |
df.drop(
|
81 |
[
|
82 |
"histology",
|
@@ -96,7 +100,11 @@ def run_inference(
|
|
96 |
[df["cell_line"], predicted_df, df.drop(["cell_line"], axis=1)], axis=1
|
97 |
)
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
if __name__ == "__main__":
|
@@ -104,10 +112,11 @@ if __name__ == "__main__":
|
|
104 |
# Load metadata
|
105 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
106 |
|
107 |
-
examples =
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
with open(metadata_root.joinpath("article.md"), "r") as f:
|
112 |
article = f.read()
|
113 |
with open(metadata_root.joinpath("description.md"), "r") as f:
|
@@ -124,17 +133,20 @@ if __name__ == "__main__":
|
|
124 |
),
|
125 |
gr.File(
|
126 |
file_types=[".smi", ".tsv"],
|
127 |
-
label="
|
128 |
),
|
129 |
gr.File(
|
130 |
file_types=[".csv"],
|
131 |
-
label="Transcriptomics data
|
132 |
),
|
133 |
gr.Radio(choices=[True, False], label="Estimate confidence", value=False),
|
134 |
],
|
135 |
-
outputs=[
|
|
|
|
|
|
|
136 |
article=article,
|
137 |
description=description,
|
138 |
-
|
139 |
)
|
140 |
demo.launch(debug=True, show_error=True)
|
|
|
1 |
import logging
|
2 |
+
import os
|
3 |
import pathlib
|
4 |
+
import tempfile
|
5 |
from typing import List, Optional
|
6 |
|
|
|
|
|
7 |
import gradio as gr
|
|
|
8 |
import pandas as pd
|
9 |
+
from rdkit import Chem
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
from configuration import GENE_EXPRESSION_METADATA
|
13 |
+
from submission import submission
|
14 |
|
15 |
logger = logging.getLogger(__name__)
|
16 |
logger.addHandler(logging.NullHandler())
|
|
|
29 |
omic_path: Optional[str],
|
30 |
confidence: bool,
|
31 |
):
|
32 |
+
|
33 |
+
print(smiles)
|
34 |
+
print(smiles_path)
|
35 |
# Read SMILES
|
36 |
if not isinstance(smiles_path, (str, type(None))):
|
37 |
raise TypeError(
|
38 |
f"SMILES file pass has to be None or str, not {type(smiles_path)}"
|
39 |
)
|
40 |
if smiles is None and smiles_path is None:
|
41 |
+
raise TypeError("Pass either single SMILES or a file")
|
42 |
elif smiles is not None:
|
43 |
smiles = [smiles]
|
44 |
elif smiles_path is not None:
|
|
|
76 |
results[f"epistemic_confidence_{smi}"] = (
|
77 |
result["aleatoric_confidence"].squeeze().round(3)
|
78 |
)
|
|
|
79 |
predicted_df = pd.DataFrame(results)
|
80 |
|
81 |
# Prepare DF to visualize
|
82 |
if omic_path is None:
|
83 |
+
df = GENE_EXPRESSION_METADATA.copy()
|
|
|
84 |
df.drop(
|
85 |
[
|
86 |
"histology",
|
|
|
100 |
[df["cell_line"], predicted_df, df.drop(["cell_line"], axis=1)], axis=1
|
101 |
)
|
102 |
|
103 |
+
# Save to temporary dir
|
104 |
+
temp_path = os.path.join(tempfile.gettempdir(), "paccmann_result.csv")
|
105 |
+
result_df.to_csv(temp_path)
|
106 |
+
|
107 |
+
return temp_path, result_df.head(25)
|
108 |
|
109 |
|
110 |
if __name__ == "__main__":
|
|
|
112 |
# Load metadata
|
113 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
114 |
|
115 |
+
examples = [
|
116 |
+
["COc1cc(O)c2c(c1)C=CCC(O)C(O)C(=O)C=CCC(C)OC2=O", "", "", False],
|
117 |
+
["COC1=C(C=C2C(=C1)N=CN=C2NC3=CC(=C(C=C3)F)Cl)OCCCN4CCOCC4", "", "", True],
|
118 |
+
["", metadata_root.joinpath("molecules.smi"), "", False],
|
119 |
+
]
|
120 |
with open(metadata_root.joinpath("article.md"), "r") as f:
|
121 |
article = f.read()
|
122 |
with open(metadata_root.joinpath("description.md"), "r") as f:
|
|
|
133 |
),
|
134 |
gr.File(
|
135 |
file_types=[".smi", ".tsv"],
|
136 |
+
label="Tab-separated file with SMILES in 1st column)",
|
137 |
),
|
138 |
gr.File(
|
139 |
file_types=[".csv"],
|
140 |
+
label="Transcriptomics data file",
|
141 |
),
|
142 |
gr.Radio(choices=[True, False], label="Estimate confidence", value=False),
|
143 |
],
|
144 |
+
outputs=[
|
145 |
+
gr.File(label="Download full results"),
|
146 |
+
gr.DataFrame(label="Preview of results for 25 cell lines"),
|
147 |
+
],
|
148 |
article=article,
|
149 |
description=description,
|
150 |
+
examples=examples,
|
151 |
)
|
152 |
demo.launch(debug=True, show_error=True)
|