Spaces:
Sleeping
Sleeping
update
Browse files- src/streamlit_app.py +386 -426
src/streamlit_app.py
CHANGED
|
@@ -1,392 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import altair as alt
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import streamlit_vertical_slider as svs
|
| 4 |
import torch
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Define options globally as it's used in initialization and UI
|
| 11 |
options = [str(i) for i in range(10)] + ["Text"]
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# --- Session State Initialization ---
|
| 14 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
| 15 |
-
if
|
| 16 |
st.session_state.running_demo = False
|
| 17 |
-
if
|
| 18 |
st.session_state.demo_step = 0
|
| 19 |
-
if
|
| 20 |
st.session_state.last_update_time = 0
|
| 21 |
-
if
|
| 22 |
st.session_state.loss_container = None
|
| 23 |
-
if
|
| 24 |
st.session_state.previous_chart_html = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Initialize states for sliders and ground_truth selector
|
| 27 |
# Using len(options) to correctly size for 0-9 + "Text"
|
| 28 |
for i in range(len(options)):
|
| 29 |
if f"slider_{i}" not in st.session_state:
|
| 30 |
-
st.session_state[f"slider_{i}"] =
|
| 31 |
-
if
|
| 32 |
-
st.session_state[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
st.
|
| 36 |
|
| 37 |
st.markdown("""
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
""")
|
| 43 |
|
| 44 |
-
# --- Scenario Definitions ---
|
| 45 |
-
scenarios = [
|
| 46 |
-
{
|
| 47 |
-
"name": "Probability mass at 0",
|
| 48 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 49 |
-
"ground_truth": "0",
|
| 50 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"name": "Probability mass at 0",
|
| 54 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 55 |
-
"ground_truth": "1",
|
| 56 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 57 |
-
},
|
| 58 |
-
{
|
| 59 |
-
"name": "Probability mass at 0",
|
| 60 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 61 |
-
"ground_truth": "2",
|
| 62 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"name": "Probability mass at 0",
|
| 66 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 67 |
-
"ground_truth": "3",
|
| 68 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 69 |
-
},
|
| 70 |
-
{
|
| 71 |
-
"name": "Probability mass at 0",
|
| 72 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 73 |
-
"ground_truth": "4",
|
| 74 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"name": "Probability mass at 0",
|
| 78 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 79 |
-
"ground_truth": "5",
|
| 80 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"name": "Probability mass at 0",
|
| 84 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 85 |
-
"ground_truth": "6",
|
| 86 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"name": "Probability mass at 0",
|
| 90 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 91 |
-
"ground_truth": "7",
|
| 92 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"name": "Probability mass at 0",
|
| 96 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 97 |
-
"ground_truth": "8",
|
| 98 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 99 |
-
},
|
| 100 |
-
{
|
| 101 |
-
"name": "Probability mass at 0",
|
| 102 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
| 103 |
-
"ground_truth": "9",
|
| 104 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 105 |
-
},
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
{
|
| 109 |
-
"name": "Probability mass around 5",
|
| 110 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 111 |
-
"ground_truth": "0",
|
| 112 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 113 |
-
},
|
| 114 |
-
{
|
| 115 |
-
"name": "Probability mass around 5",
|
| 116 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 117 |
-
"ground_truth": "1",
|
| 118 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 119 |
-
},
|
| 120 |
-
{
|
| 121 |
-
"name": "Probability mass around 5",
|
| 122 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 123 |
-
"ground_truth": "2",
|
| 124 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 125 |
-
},
|
| 126 |
-
{
|
| 127 |
-
"name": "Probability mass around 5",
|
| 128 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 129 |
-
"ground_truth": "3",
|
| 130 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 131 |
-
},
|
| 132 |
-
{
|
| 133 |
-
"name": "Probability mass around 5",
|
| 134 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 135 |
-
"ground_truth": "4",
|
| 136 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
| 137 |
-
},
|
| 138 |
-
{
|
| 139 |
-
"name": "Probability mass around ground truth (5)",
|
| 140 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 141 |
-
"ground_truth": "5",
|
| 142 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"name": "Probability mass around 5",
|
| 146 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 147 |
-
"ground_truth": "6",
|
| 148 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
| 149 |
-
},
|
| 150 |
-
{
|
| 151 |
-
"name": "Probability mass around 5",
|
| 152 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 153 |
-
"ground_truth": "7",
|
| 154 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
| 155 |
-
},
|
| 156 |
-
{
|
| 157 |
-
"name": "Probability mass around 5",
|
| 158 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 159 |
-
"ground_truth": "8",
|
| 160 |
-
"explanation": "Cross Entropy is high, NTL is higher but still penalizes less than CE because distribution knows it's a number."
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"name": "Probability mass around 5",
|
| 164 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
| 165 |
-
"ground_truth": "9",
|
| 166 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
| 167 |
-
},
|
| 168 |
-
|
| 169 |
-
{
|
| 170 |
-
"name": "Probability mass concentrated on 5",
|
| 171 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 172 |
-
"ground_truth": "0",
|
| 173 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 174 |
-
},
|
| 175 |
-
{
|
| 176 |
-
"name": "Probability mass concentrated on 5",
|
| 177 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 178 |
-
"ground_truth": "1",
|
| 179 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 180 |
-
},
|
| 181 |
-
{
|
| 182 |
-
"name": "Probability mass concentrated on 5",
|
| 183 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 184 |
-
"ground_truth": "2",
|
| 185 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"name": "Probability mass concentrated on 5",
|
| 189 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 190 |
-
"ground_truth": "3",
|
| 191 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 192 |
-
},
|
| 193 |
-
{
|
| 194 |
-
"name": "Probability mass concentrated on 5",
|
| 195 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 196 |
-
"ground_truth": "4",
|
| 197 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"name": "Probability mass concentrated on 5",
|
| 201 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 202 |
-
"ground_truth": "5",
|
| 203 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 204 |
-
},
|
| 205 |
-
{
|
| 206 |
-
"name": "Probability mass concentrated on 5",
|
| 207 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 208 |
-
"ground_truth": "6",
|
| 209 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 210 |
-
},
|
| 211 |
-
{
|
| 212 |
-
"name": "Probability mass concentrated on 5",
|
| 213 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 214 |
-
"ground_truth": "7",
|
| 215 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 216 |
-
},
|
| 217 |
-
{
|
| 218 |
-
"name": "Probability mass concentrated on 5",
|
| 219 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 220 |
-
"ground_truth": "8",
|
| 221 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"name": "Probability mass concentrated on 5",
|
| 225 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
| 226 |
-
"ground_truth": "9",
|
| 227 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
| 228 |
-
},
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
{
|
| 232 |
-
"name": "Probability mass concentrated on 1",
|
| 233 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 234 |
-
"ground_truth": "0",
|
| 235 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"name": "Probability mass concentrated on 1",
|
| 239 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 240 |
-
"ground_truth": "1",
|
| 241 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 242 |
-
},
|
| 243 |
-
{
|
| 244 |
-
"name": "Probability mass concentrated on 1",
|
| 245 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 246 |
-
"ground_truth": "2",
|
| 247 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 248 |
-
},
|
| 249 |
-
{
|
| 250 |
-
"name": "Probability mass concentrated on 1",
|
| 251 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 252 |
-
"ground_truth": "3",
|
| 253 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 254 |
-
},
|
| 255 |
-
{
|
| 256 |
-
"name": "Probability mass concentrated on 1",
|
| 257 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 258 |
-
"ground_truth": "4",
|
| 259 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 260 |
-
},
|
| 261 |
-
{
|
| 262 |
-
"name": "Probability mass concentrated on 1",
|
| 263 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 264 |
-
"ground_truth": "5",
|
| 265 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 266 |
-
},
|
| 267 |
-
{
|
| 268 |
-
"name": "Probability mass concentrated on 1",
|
| 269 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 270 |
-
"ground_truth": "6",
|
| 271 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 272 |
-
},
|
| 273 |
-
{
|
| 274 |
-
"name": "Probability mass concentrated on 1",
|
| 275 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 276 |
-
"ground_truth": "7",
|
| 277 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 278 |
-
},
|
| 279 |
-
{
|
| 280 |
-
"name": "Probability mass concentrated on 1",
|
| 281 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 282 |
-
"ground_truth": "8",
|
| 283 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 284 |
-
},
|
| 285 |
-
{
|
| 286 |
-
"name": "Probability mass concentrated on 1",
|
| 287 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
| 288 |
-
"ground_truth": "9",
|
| 289 |
-
"explanation": "Both losses are low because the prediction is correct."
|
| 290 |
-
},
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
{
|
| 294 |
-
"name": "Almost correct (1 vs 2)",
|
| 295 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
| 296 |
-
"ground_truth": "0",
|
| 297 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
| 298 |
-
},
|
| 299 |
-
{
|
| 300 |
-
"name": "Almost correct (1 vs 2)",
|
| 301 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
| 302 |
-
"ground_truth": "1",
|
| 303 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
| 304 |
-
},
|
| 305 |
-
{
|
| 306 |
-
"name": "Almost correct (1 vs 2)",
|
| 307 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
| 308 |
-
"ground_truth": "2",
|
| 309 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
| 310 |
-
},
|
| 311 |
-
{
|
| 312 |
-
"name": "Almost correct (1 vs 2)",
|
| 313 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
| 314 |
-
"ground_truth": "3",
|
| 315 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
| 316 |
-
}
|
| 317 |
-
]
|
| 318 |
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
def apply_scenario(step_idx):
|
| 321 |
-
scenario =
|
| 322 |
-
# These assignments modify session state. They must be done *before* the widgets
|
| 323 |
-
# are rendered in the script run that should display these new values.
|
| 324 |
for i, val in enumerate(scenario["values"]):
|
| 325 |
st.session_state[f"slider_{i}"] = val
|
| 326 |
-
st.session_state['ground_truth'] = scenario["ground_truth"]
|
| 327 |
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
st.session_state.running_demo = True
|
| 330 |
st.session_state.demo_step = 0
|
| 331 |
st.session_state.last_update_time = time.time()
|
| 332 |
-
apply_scenario(0)
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
def stop_demo():
|
| 336 |
st.session_state.running_demo = False
|
| 337 |
|
|
|
|
| 338 |
# --- Demo State Advancement Logic ---
|
| 339 |
# This block handles advancing the demo. If it advances, it updates session state
|
| 340 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
| 341 |
if st.session_state.running_demo:
|
|
|
|
| 342 |
current_time = time.time()
|
| 343 |
-
if current_time - st.session_state.last_update_time >
|
| 344 |
-
|
| 345 |
-
st.session_state.demo_step
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
# --- UI Rendering ---
|
| 351 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
| 352 |
|
| 353 |
if st.session_state.running_demo:
|
| 354 |
-
st.info(
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
| 356 |
if st.button("Stop Demo"):
|
| 357 |
-
|
| 358 |
st.rerun()
|
| 359 |
-
else:
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
st.
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
# Ground truth selectbox
|
| 380 |
-
st.selectbox(
|
| 381 |
-
"Ground Truth Token", options=options,
|
| 382 |
-
index=options.index(st.session_state['ground_truth']), # Display value from session state
|
| 383 |
-
key='ground_truth' # Links widget to st.session_state['ground_truth']
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
# Placeholder for charts and loss calculations that will be updated
|
| 387 |
-
# This section always reads the current st.session_state to generate its content.
|
| 388 |
-
|
| 389 |
-
current_prob_values_from_state = [st.session_state.get(f"slider_{j}", 1.0/len(options)) for j in range(len(options))]
|
| 390 |
total_from_state = sum(current_prob_values_from_state)
|
| 391 |
probs_for_charts = (
|
| 392 |
torch.ones(len(options)) / len(options)
|
|
@@ -394,112 +200,265 @@ probs_for_charts = (
|
|
| 394 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
| 395 |
)
|
| 396 |
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
if gt_choice_for_charts == "Text":
|
| 399 |
-
gt_index_for_charts = 10
|
| 400 |
gt_numeric_for_charts = None
|
| 401 |
else:
|
| 402 |
gt_index_for_charts = int(gt_choice_for_charts)
|
| 403 |
gt_numeric_for_charts = gt_index_for_charts
|
| 404 |
|
| 405 |
-
st.
|
| 406 |
-
|
| 407 |
-
df_dist["type"] = ["Ground Truth" if token == gt_choice_for_charts else "Prediction" for token in options]
|
| 408 |
-
chart = (
|
| 409 |
-
alt.Chart(df_dist).mark_bar().encode(
|
| 410 |
-
x=alt.X("token:N", title="Token", sort=options), # Ensure consistent sort order
|
| 411 |
-
y=alt.Y("probability:Q", title="Probability", scale=alt.Scale(domain=[0, 1])),
|
| 412 |
-
color=alt.Color("type:N", scale=alt.Scale(domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]), legend=alt.Legend(title="Token Type"))
|
| 413 |
-
).properties(height=300)
|
| 414 |
-
)
|
| 415 |
-
st.altair_chart(chart, use_container_width=True)
|
| 416 |
-
|
| 417 |
-
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
|
| 418 |
-
if gt_numeric_for_charts is None: # Text token
|
| 419 |
-
ntl_mse_loss = torch.tensor(float('nan')) # MSE not applicable for text
|
| 420 |
-
ntl_was_loss = torch.tensor(float('nan')) # WAS not applicable for text
|
| 421 |
-
else: # Numeric token
|
| 422 |
-
numeric_probs_for_loss = probs_for_charts[:10] # Probabilities for 0-9
|
| 423 |
-
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
|
| 424 |
-
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
|
| 425 |
-
if numeric_probs_sum > 1e-6 : # Avoid division by zero
|
| 426 |
-
normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
|
| 427 |
-
else:
|
| 428 |
-
normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)
|
| 429 |
|
|
|
|
| 430 |
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
-
|
| 434 |
-
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6 :
|
| 435 |
-
pred_value = torch.sum( (probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * loss_values_tensor)
|
| 436 |
-
elif gt_choice_for_charts != "Text": # if sum is zero, pred_value is ill-defined or 0
|
| 437 |
-
pred_value = torch.tensor(0.0)
|
| 438 |
-
else: # Should not happen if gt_numeric_for_charts is not None
|
| 439 |
-
pred_value = torch.tensor(float('nan'))
|
| 440 |
|
| 441 |
|
| 442 |
-
|
| 443 |
-
ntl_mse_loss = (pred_value - float(gt_numeric_for_charts)) ** 2
|
| 444 |
-
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
|
| 445 |
-
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
| 446 |
-
ntl_was_loss = torch.sum((probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * abs_diff)
|
| 447 |
-
elif gt_choice_for_charts != "Text":
|
| 448 |
-
ntl_was_loss = torch.tensor(0.0) # Or some other default if all numeric probs are zero
|
| 449 |
-
else:
|
| 450 |
-
ntl_was_loss = torch.tensor(float('nan'))
|
| 451 |
-
else:
|
| 452 |
-
ntl_mse_loss = torch.tensor(float('nan'))
|
| 453 |
-
ntl_was_loss = torch.tensor(float('nan'))
|
| 454 |
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
| 462 |
if was_val != "N/A":
|
| 463 |
loss_data["Loss"].append("NTL-WAS")
|
| 464 |
loss_data["Value"].append(was_val)
|
| 465 |
-
if
|
| 466 |
-
loss_data["Loss"].append("NTL-
|
| 467 |
-
loss_data["Value"].append(
|
| 468 |
|
| 469 |
loss_df = pd.DataFrame(loss_data)
|
| 470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
# ============== Chart Display ==============
|
| 472 |
-
# Create a single chart for loss visualization
|
| 473 |
-
st.subheader("Loss Comparison")
|
| 474 |
-
|
| 475 |
-
# Create an Altair chart that will look good and redraw cleanly
|
| 476 |
-
chart = alt.Chart(loss_df).mark_bar().encode(
|
| 477 |
-
x=alt.X('Loss:N', sort=loss_df["Loss"].tolist()),
|
| 478 |
-
y=alt.Y('Value:Q', scale=alt.Scale(domain=[0, max(loss_df["Value"].max() * 1.2, 20 if st.session_state.running_demo else 0.5)])),
|
| 479 |
-
color=alt.Color('Loss:N', scale=alt.Scale(
|
| 480 |
-
domain=['Cross Entropy', 'NTL-WAS', 'NTL-MSE'],
|
| 481 |
-
range=['steelblue', 'red', 'forestgreen']
|
| 482 |
-
)),
|
| 483 |
-
tooltip=['Loss', 'Value']
|
| 484 |
-
).properties(
|
| 485 |
-
height=300
|
| 486 |
-
)
|
| 487 |
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
)
|
|
|
|
| 497 |
|
| 498 |
-
|
| 499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
| 501 |
# Display chart with the full container width
|
| 502 |
-
st.altair_chart(final_chart, use_container_width=True)
|
| 503 |
|
| 504 |
# --- Polling Rerun for Demo Mode ---
|
| 505 |
# If the demo is running and we haven't just advanced (which would have caused a rerun),
|
|
@@ -507,20 +466,21 @@ st.altair_chart(final_chart, use_container_width=True)
|
|
| 507 |
if st.session_state.running_demo:
|
| 508 |
# This check is implicitly: if we are here and demo is running, it means
|
| 509 |
# the time-based advance condition was NOT met in the block at the top.
|
| 510 |
-
time.sleep(
|
| 511 |
st.rerun()
|
| 512 |
|
| 513 |
-
|
| 514 |
st.markdown("""
|
| 515 |
-
###
|
|
|
|
|
|
|
| 516 |
|
| 517 |
-
|
| 518 |
-
- **Number Token Loss (NTL)**: Considers numerical proximity - predicting "7" when the true value is "8" is better than predicting "2".
|
| 519 |
""")
|
| 520 |
|
| 521 |
-
|
| 522 |
-
st.markdown("### Resources")
|
| 523 |
st.markdown("""
|
| 524 |
-
- [
|
| 525 |
-
- [
|
|
|
|
| 526 |
""")
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
import altair as alt
|
| 5 |
+
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
+
import streamlit as st
|
| 8 |
import streamlit_vertical_slider as svs
|
| 9 |
import torch
|
| 10 |
+
|
| 11 |
+
from scenarios import dirac, gauss, make_bimodal_scenarios
|
| 12 |
+
|
| 13 |
+
logging.getLogger("streamlit.watcher.local_sources_watcher").setLevel(logging.ERROR)
|
| 14 |
+
|
| 15 |
+
DEMO_INTERVAL = 0.75
|
| 16 |
+
CE_SCALING = 0.25
|
| 17 |
+
MAX_LOSS_PLOT = 6
|
| 18 |
+
LAST_STEP = -1
|
| 19 |
+
|
| 20 |
|
| 21 |
# Define options globally as it's used in initialization and UI
|
| 22 |
options = [str(i) for i in range(10)] + ["Text"]
|
| 23 |
|
| 24 |
+
|
| 25 |
+
def compute_losses(probs: torch.Tensor, gt_token: str) -> tuple[float, float, float]:
|
| 26 |
+
"""Compute CE, NTL-MAE, NTL-WAS losses for the given probability vector and ground truth token."""
|
| 27 |
+
ce_loss = CE_SCALING * -torch.log(
|
| 28 |
+
torch.clamp(probs[options.index(gt_token)], min=1e-9)
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
numeric_mass = probs[:10].sum()
|
| 32 |
+
|
| 33 |
+
if gt_token == "Text" or numeric_mass < 1e-6:
|
| 34 |
+
return ce_loss.item(), 0.0, 0.0
|
| 35 |
+
|
| 36 |
+
gt_numeric = int(gt_token)
|
| 37 |
+
token_vals = torch.arange(10, dtype=torch.float32)
|
| 38 |
+
mae = numeric_mass * abs(torch.dot(token_vals, probs[:10]) - gt_numeric)
|
| 39 |
+
was = numeric_mass * torch.dot(probs[:10], torch.abs(token_vals - gt_numeric))
|
| 40 |
+
return round(ce_loss.item(), 3), round(mae.item(), 3), round(was.item(), 3)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
# --- Session State Initialization ---
|
| 44 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
| 45 |
+
if "running_demo" not in st.session_state:
|
| 46 |
st.session_state.running_demo = False
|
| 47 |
+
if "demo_step" not in st.session_state:
|
| 48 |
st.session_state.demo_step = 0
|
| 49 |
+
if "last_update_time" not in st.session_state:
|
| 50 |
st.session_state.last_update_time = 0
|
| 51 |
+
if "loss_container" not in st.session_state:
|
| 52 |
st.session_state.loss_container = None
|
| 53 |
+
if "previous_chart_html" not in st.session_state:
|
| 54 |
st.session_state.previous_chart_html = ""
|
| 55 |
+
if "active_scenarios" not in st.session_state:
|
| 56 |
+
# default if you want one to load on first show
|
| 57 |
+
st.session_state.active_scenarios = dirac
|
| 58 |
+
if "loss_history" not in st.session_state:
|
| 59 |
+
st.session_state.loss_history = []
|
| 60 |
+
if "df_loss_plot" not in st.session_state:
|
| 61 |
+
# Initialize an empty DataFrame for loss history
|
| 62 |
+
st.session_state.df_loss_plot = pd.DataFrame(
|
| 63 |
+
columns=["step", "x_val", "Loss Type", "Loss Value"]
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
|
| 67 |
# Initialize states for sliders and ground_truth selector
|
| 68 |
# Using len(options) to correctly size for 0-9 + "Text"
|
| 69 |
for i in range(len(options)):
|
| 70 |
if f"slider_{i}" not in st.session_state:
|
| 71 |
+
st.session_state[f"slider_{i}"] = 0
|
| 72 |
+
if "ground_truth" not in st.session_state:
|
| 73 |
+
st.session_state["ground_truth"] = options[5]
|
| 74 |
+
if "manual_ground_truth" not in st.session_state:
|
| 75 |
+
st.session_state["manual_ground_truth"] = options[5]
|
| 76 |
+
if "demo_name" not in st.session_state:
|
| 77 |
+
st.session_state["demo_name"] = "Dirac"
|
| 78 |
+
|
| 79 |
|
| 80 |
+
st.title("NTL -- The Number Token Loss ๐")
|
| 81 |
+
|
| 82 |
+
st.markdown(
|
| 83 |
+
"""This is the interactive demo for our [ICML 2025](https://arxiv.org/abs/2411.02083) paper!๐
|
| 84 |
+
โก๏ธ NTL augments cross-entropy to help LMs reason better with numbers ๐ง
|
| 85 |
+
"""
|
| 86 |
+
)
|
| 87 |
|
| 88 |
+
st.subheader("Demo 1 โ NTL vs. Cross Entropy in 3 Scenarios")
|
| 89 |
|
| 90 |
st.markdown("""
|
| 91 |
+
1๏ธโฃ Pick a ground truth token: a digit (0โ9) or "Text" ๐ (simulates generic text tokens).
|
| 92 |
+
2๏ธโฃ Choose a demo:
|
| 93 |
+
- **Dirac** โก: All probability mass on one token.
|
| 94 |
+
- **Gaussian** ๐: Soft bell-curve around the true number.
|
| 95 |
+
- **Bimodal** ๐ฏ: Two peaks moving away from the target.
|
| 96 |
+
|
| 97 |
+
Watch how losses evolve as predictions get worse โ and see how NTL shines compared to CE! ๐
|
| 98 |
""")
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
if "ground_truth" not in st.session_state:
|
| 102 |
+
st.session_state["ground_truth"] = "4"
|
| 103 |
+
gt = st.selectbox("Ground Truth Token", options=options, key="ground_truth")
|
| 104 |
+
|
| 105 |
+
|
| 106 |
def apply_scenario(step_idx):
|
| 107 |
+
scenario = st.session_state.active_scenarios[step_idx]
|
|
|
|
|
|
|
| 108 |
for i, val in enumerate(scenario["values"]):
|
| 109 |
st.session_state[f"slider_{i}"] = val
|
|
|
|
| 110 |
|
| 111 |
+
|
| 112 |
+
def start_dirac_demo():
|
| 113 |
+
st.session_state.loss_history = []
|
| 114 |
+
st.session_state.active_scenarios = dirac
|
| 115 |
+
st.session_state.demo_name = "Dirac"
|
| 116 |
+
st.session_state.running_demo = True
|
| 117 |
+
st.session_state.demo_step = 0
|
| 118 |
+
st.session_state.last_update_time = time.time()
|
| 119 |
+
apply_scenario(0)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def start_gauss_demo():
|
| 123 |
+
st.session_state.loss_history = []
|
| 124 |
+
st.session_state.active_scenarios = gauss
|
| 125 |
+
st.session_state.demo_name = "Gauss"
|
| 126 |
st.session_state.running_demo = True
|
| 127 |
st.session_state.demo_step = 0
|
| 128 |
st.session_state.last_update_time = time.time()
|
| 129 |
+
apply_scenario(0)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def start_bimodal_demo():
|
| 133 |
+
st.session_state.loss_history = []
|
| 134 |
+
gt = st.session_state["ground_truth"]
|
| 135 |
+
st.session_state.active_scenarios = make_bimodal_scenarios(gt, options)
|
| 136 |
+
|
| 137 |
+
st.session_state.demo_name = f"Bimodal (GT={gt})"
|
| 138 |
+
st.session_state.running_demo = True
|
| 139 |
+
st.session_state.demo_step = 0
|
| 140 |
+
st.session_state.last_update_time = time.time()
|
| 141 |
+
apply_scenario(0)
|
| 142 |
+
|
| 143 |
|
| 144 |
def stop_demo():
|
| 145 |
st.session_state.running_demo = False
|
| 146 |
|
| 147 |
+
|
| 148 |
# --- Demo State Advancement Logic ---
|
| 149 |
# This block handles advancing the demo. If it advances, it updates session state
|
| 150 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
| 151 |
if st.session_state.running_demo:
|
| 152 |
+
scenario = st.session_state.active_scenarios
|
| 153 |
current_time = time.time()
|
| 154 |
+
if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
|
| 155 |
+
# if we havenโt yet shown the last scenario, advance
|
| 156 |
+
if st.session_state.demo_step < len(scenario) - 1:
|
| 157 |
+
st.session_state.demo_step += 1
|
| 158 |
+
apply_scenario(st.session_state.demo_step)
|
| 159 |
+
st.session_state.last_update_time = current_time
|
| 160 |
+
# st.rerun() # not needed, leading to too many reruns
|
| 161 |
+
else:
|
| 162 |
+
# we just displayed the final case โ stop
|
| 163 |
+
st.session_state.running_demo = False
|
| 164 |
|
| 165 |
# --- UI Rendering ---
|
| 166 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
| 167 |
|
| 168 |
if st.session_state.running_demo:
|
| 169 |
+
st.info(
|
| 170 |
+
f"Showing scenario {st.session_state.demo_step + 1}"
|
| 171 |
+
f"/{len(st.session_state.active_scenarios)}: "
|
| 172 |
+
f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
|
| 173 |
+
)
|
| 174 |
if st.button("Stop Demo"):
|
| 175 |
+
st.session_state.running_demo = False
|
| 176 |
st.rerun()
|
| 177 |
+
else:
|
| 178 |
+
col1, col2, col3 = st.columns(3)
|
| 179 |
+
with col1:
|
| 180 |
+
if st.button("Run: Dirac"):
|
| 181 |
+
start_dirac_demo()
|
| 182 |
+
st.rerun()
|
| 183 |
+
with col2:
|
| 184 |
+
if st.button("Run: Gauss"):
|
| 185 |
+
start_gauss_demo()
|
| 186 |
+
st.rerun()
|
| 187 |
+
with col3:
|
| 188 |
+
if st.button("Run: Bimodal"):
|
| 189 |
+
start_bimodal_demo()
|
| 190 |
+
st.rerun()
|
| 191 |
+
|
| 192 |
+
current_prob_values_from_state = [
|
| 193 |
+
st.session_state.get(f"slider_{j}", 0)
|
| 194 |
+
for j in range(len(options)) # 1.0 / len(options)) for j in range(len(options))
|
| 195 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
total_from_state = sum(current_prob_values_from_state)
|
| 197 |
probs_for_charts = (
|
| 198 |
torch.ones(len(options)) / len(options)
|
|
|
|
| 200 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
| 201 |
)
|
| 202 |
|
| 203 |
+
# Use manual GT token when not in running demo
|
| 204 |
+
gt_choice_for_charts = (
|
| 205 |
+
st.session_state["manual_ground_truth"]
|
| 206 |
+
if not st.session_state.running_demo
|
| 207 |
+
else st.session_state["ground_truth"]
|
| 208 |
+
)
|
| 209 |
if gt_choice_for_charts == "Text":
|
| 210 |
+
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
|
| 211 |
gt_numeric_for_charts = None
|
| 212 |
else:
|
| 213 |
gt_index_for_charts = int(gt_choice_for_charts)
|
| 214 |
gt_numeric_for_charts = gt_index_for_charts
|
| 215 |
|
| 216 |
+
gt = st.session_state["ground_truth"]
|
| 217 |
+
demo_name = st.session_state["demo_name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
+
st.markdown(f'#### Predicted distribution (<span style="color:darkgreen;">ground truth: {gt}</span>)', unsafe_allow_html=True)
|
| 220 |
|
| 221 |
+
df_dist = pd.DataFrame(
|
| 222 |
+
{"token": options, "probability": probs_for_charts.numpy().round(2)}
|
| 223 |
+
)
|
| 224 |
+
df_dist["is_gt"] = df_dist["token"] == gt
|
| 225 |
+
|
| 226 |
+
bars = (
|
| 227 |
+
alt.Chart(df_dist)
|
| 228 |
+
.mark_bar(color="dodgerblue", size=40)
|
| 229 |
+
.encode(
|
| 230 |
+
x=alt.X(
|
| 231 |
+
"token:N",
|
| 232 |
+
title="Token",
|
| 233 |
+
sort=options,
|
| 234 |
+
axis=alt.Axis(
|
| 235 |
+
labelAngle=0,
|
| 236 |
+
labelFontSize=14,
|
| 237 |
+
titleFontSize=16,
|
| 238 |
+
labelAlign="center",
|
| 239 |
+
labelFlush=False,
|
| 240 |
+
),
|
| 241 |
+
),
|
| 242 |
+
color=alt.condition(
|
| 243 |
+
"datum.is_gt",
|
| 244 |
+
alt.value("darkgreen"), # color for ground truth
|
| 245 |
+
alt.value("dodgerblue") # color for others
|
| 246 |
+
),
|
| 247 |
+
y=alt.Y(
|
| 248 |
+
"probability:Q",
|
| 249 |
+
title="Probability",
|
| 250 |
+
scale=alt.Scale(domain=[0, 1]),
|
| 251 |
+
axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
|
| 252 |
+
),
|
| 253 |
+
tooltip=[
|
| 254 |
+
alt.Tooltip("token:N", title="Token"),
|
| 255 |
+
alt.Tooltip("probability:Q", title="Predicted Prob.", format=".2f"),
|
| 256 |
+
alt.Tooltip("is_gt:N", title="Ground Truth")
|
| 257 |
+
]
|
| 258 |
+
)
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
st.altair_chart(bars.properties(height=200), use_container_width=True, theme="streamlit")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
+
ce_val, mae_val, was_val = compute_losses(probs_for_charts, gt_choice_for_charts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
|
| 267 |
+
if (
|
| 268 |
+
st.session_state.running_demo
|
| 269 |
+
and len(st.session_state.loss_history) < st.session_state.demo_step + 1
|
| 270 |
+
):
|
| 271 |
+
step = st.session_state.demo_step
|
| 272 |
+
scenario = st.session_state.active_scenarios[step]
|
| 273 |
+
ce, mae, was = compute_losses(probs_for_charts, gt_choice_for_charts)
|
| 274 |
|
| 275 |
+
# pick x_val differently for bimodal vs others
|
| 276 |
+
if st.session_state.demo_name.startswith("Bimodal"):
|
| 277 |
+
x_val = scenario["name"] # e.g. "(4,4)", "(3,5)", โฆ
|
| 278 |
+
else:
|
| 279 |
+
# exactly like before:
|
| 280 |
+
best_idx = np.argmax(scenario["values"])
|
| 281 |
+
x_val = options[best_idx] # "0", "1", โฆ, or "Text"
|
| 282 |
+
|
| 283 |
+
st.session_state.loss_history.append(
|
| 284 |
+
{
|
| 285 |
+
"step": step,
|
| 286 |
+
"x_val": x_val,
|
| 287 |
+
"Cross Entropy": ce,
|
| 288 |
+
"NTL-MAE": mae,
|
| 289 |
+
"NTL-WAS": was,
|
| 290 |
+
}
|
| 291 |
+
)
|
| 292 |
+
st.session_state.df_loss_plot = pd.DataFrame(st.session_state.loss_history).melt(id_vars=["step", "x_val"],
|
| 293 |
+
value_vars=["Cross Entropy", "NTL-MAE", "NTL-WAS"],
|
| 294 |
+
var_name="Loss Type",
|
| 295 |
+
value_name="Loss Value")
|
| 296 |
|
| 297 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
| 298 |
if was_val != "N/A":
|
| 299 |
loss_data["Loss"].append("NTL-WAS")
|
| 300 |
loss_data["Value"].append(was_val)
|
| 301 |
+
if mae_val != "N/A":
|
| 302 |
+
loss_data["Loss"].append("NTL-MAE")
|
| 303 |
+
loss_data["Value"].append(mae_val)
|
| 304 |
|
| 305 |
loss_df = pd.DataFrame(loss_data)
|
| 306 |
|
| 307 |
+
if st.session_state.demo_name.startswith("Bimodal"):
|
| 308 |
+
domain = [sc["name"] for sc in st.session_state.active_scenarios]
|
| 309 |
+
x_title = f"Offset from GT {st.session_state['ground_truth']}"
|
| 310 |
+
else:
|
| 311 |
+
domain = options
|
| 312 |
+
x_title = f"Maximum of predicted {st.session_state['demo_name']} distribution"
|
| 313 |
+
|
| 314 |
+
|
| 315 |
# ============== Chart Display ==============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
+
|
| 318 |
+
st.markdown("#### Loss as a function of predicted distribution")
|
| 319 |
+
|
| 320 |
+
grouped_chart = (
|
| 321 |
+
alt.Chart(st.session_state.df_loss_plot)
|
| 322 |
+
.mark_bar()
|
| 323 |
+
.encode(
|
| 324 |
+
x=alt.X(
|
| 325 |
+
"x_val:N",
|
| 326 |
+
title=x_title,
|
| 327 |
+
sort=domain,
|
| 328 |
+
scale=alt.Scale(domain=domain),
|
| 329 |
+
axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
|
| 330 |
+
),
|
| 331 |
+
y=alt.Y(
|
| 332 |
+
"Loss Value:Q",
|
| 333 |
+
title="Loss Value",
|
| 334 |
+
scale=alt.Scale(domain=[0, MAX_LOSS_PLOT], nice=False, clamp=True),
|
| 335 |
+
axis=alt.Axis(labelFontSize=14, titleFontSize=16),
|
| 336 |
+
),
|
| 337 |
+
color=alt.Color(
|
| 338 |
+
"Loss Type:N",
|
| 339 |
+
scale=alt.Scale(
|
| 340 |
+
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
|
| 341 |
+
range=["red", "limegreen", "blueviolet"],
|
| 342 |
+
),
|
| 343 |
+
legend=alt.Legend(
|
| 344 |
+
title="",
|
| 345 |
+
orient="top",
|
| 346 |
+
direction="horizontal",
|
| 347 |
+
columns=3,
|
| 348 |
+
),
|
| 349 |
+
),
|
| 350 |
+
xOffset="Loss Type:N", # grouped bars
|
| 351 |
+
tooltip=[
|
| 352 |
+
alt.Tooltip("x_val:N", title="Scenario"),
|
| 353 |
+
alt.Tooltip("Loss Type:N", title="Loss Type"),
|
| 354 |
+
alt.Tooltip("Loss Value:Q", title="Value", format=".3f"),
|
| 355 |
+
],
|
| 356 |
+
)
|
| 357 |
+
.properties(height=250)
|
| 358 |
)
|
| 359 |
+
st.altair_chart(grouped_chart, use_container_width=True, theme="streamlit")
|
| 360 |
|
| 361 |
+
|
| 362 |
+
# Create a single chart for loss visualization
|
| 363 |
+
if not st.session_state.running_demo:
|
| 364 |
+
for i in range(len(options)):
|
| 365 |
+
st.session_state[f"slider_{i}"] = 0.0
|
| 366 |
+
st.session_state.demo_step = 0
|
| 367 |
+
|
| 368 |
+
st.subheader("Demo 2 -- Manual loss comparison")
|
| 369 |
+
st.subheader("๐งช Demo 2 โ Craft your own distribution")
|
| 370 |
+
st.markdown("""
|
| 371 |
+
This demo gives you more control but is harder to interpret. See it as a playground! ๐จ
|
| 372 |
+
Manually adjust the sliders to change the predicted probabilities for each token.
|
| 373 |
+
The demo normalizes the values to form a valid probability distribution and calculates the losses.
|
| 374 |
+
|
| 375 |
+
๐ฃ **Steps:**
|
| 376 |
+
- Use the **vertical sliders** to allocate probability to each token.
|
| 377 |
+
- Choose the correct **Ground Truth Token** (0โ9 or "Text" ๐).
|
| 378 |
+
- Observe how each loss function reacts.
|
| 379 |
+
|
| 380 |
+
๐ก **Tip:** Want to trick the loss? Try putting all mass on the wrong token or spread it wildly. See how NTL handles it! ๐
|
| 381 |
+
""")
|
| 382 |
+
|
| 383 |
+
manual_gt = st.selectbox(
|
| 384 |
+
"Ground Truth Token",
|
| 385 |
+
options=options,
|
| 386 |
+
key="manual_ground_truth",
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
loss_df = pd.DataFrame(
|
| 390 |
+
{
|
| 391 |
+
"Loss": ["Cross Entropy", "NTL-MAE", "NTL-WAS"],
|
| 392 |
+
"Value": [ce_val, mae_val, was_val],
|
| 393 |
+
}
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# Sliders and Ground Truth Selector
|
| 397 |
+
# These widgets will read their initial values from st.session_state.
|
| 398 |
+
# User interactions will update st.session_state directly due to their keys.
|
| 399 |
+
st.markdown("#### Adjust the predicted token probability")
|
| 400 |
+
cols = st.columns(len(options))
|
| 401 |
+
for i, col in enumerate(cols):
|
| 402 |
+
label = options[i] # Use token name directly for label
|
| 403 |
+
with col:
|
| 404 |
+
svs.vertical_slider(
|
| 405 |
+
label=label,
|
| 406 |
+
min_value=0.0,
|
| 407 |
+
max_value=1.0,
|
| 408 |
+
step=0.01,
|
| 409 |
+
height=50,
|
| 410 |
+
key=f"slider_{i}",
|
| 411 |
+
slider_color="green",
|
| 412 |
+
track_color="lightgray",
|
| 413 |
+
thumb_color="black",
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
chart = (
|
| 417 |
+
alt.Chart(loss_df)
|
| 418 |
+
.mark_bar()
|
| 419 |
+
.encode(
|
| 420 |
+
x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
|
| 421 |
+
y=alt.Y(
|
| 422 |
+
"Value:Q",
|
| 423 |
+
scale=alt.Scale(
|
| 424 |
+
domain=[
|
| 425 |
+
0,
|
| 426 |
+
max(
|
| 427 |
+
loss_df["Value"].max() * 1.2,
|
| 428 |
+
20 if st.session_state.running_demo else 0.5,
|
| 429 |
+
),
|
| 430 |
+
]
|
| 431 |
+
),
|
| 432 |
+
),
|
| 433 |
+
color=alt.Color(
|
| 434 |
+
"Loss:N",
|
| 435 |
+
scale=alt.Scale(
|
| 436 |
+
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
|
| 437 |
+
range=["orangered", "limegreen", "blueviolet"],
|
| 438 |
+
),
|
| 439 |
+
),
|
| 440 |
+
tooltip=["Loss", "Value"],
|
| 441 |
+
)
|
| 442 |
+
.properties(height=300)
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
text = chart.mark_text(
|
| 446 |
+
align="center", baseline="bottom", dy=-5, fontSize=14
|
| 447 |
+
).encode(text=alt.Text("Value:Q", format=".3f"))
|
| 448 |
+
final_chart = chart + text
|
| 449 |
+
st.altair_chart(final_chart, use_container_width=True)
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
# # Add value labels on top of bars
|
| 453 |
+
# text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
|
| 454 |
+
# text=alt.Text("Value:Q", format=".3f")
|
| 455 |
+
# )
|
| 456 |
+
|
| 457 |
+
# # Combine chart and text
|
| 458 |
+
# final_chart = chart + text
|
| 459 |
|
| 460 |
# Display chart with the full container width
|
| 461 |
+
# st.altair_chart(final_chart, use_container_width=True)
|
| 462 |
|
| 463 |
# --- Polling Rerun for Demo Mode ---
|
| 464 |
# If the demo is running and we haven't just advanced (which would have caused a rerun),
|
|
|
|
| 466 |
if st.session_state.running_demo:
|
| 467 |
# This check is implicitly: if we are here and demo is running, it means
|
| 468 |
# the time-based advance condition was NOT met in the block at the top.
|
| 469 |
+
time.sleep(DEMO_INTERVAL)
|
| 470 |
st.rerun()
|
| 471 |
|
| 472 |
+
|
| 473 |
st.markdown("""
|
| 474 |
+
### ๐ค TL;DR โ Why NTL?
|
| 475 |
+
Cross Entropy only cares if the prediction is exactly right or wrong โโ
โ it doesnโt care *how close* a guess is!
|
| 476 |
+
Thatโs bad for LLMs doing math and numeric reasoning ๐งฎ.
|
| 477 |
|
| 478 |
+
๐ฅ NTL fixes that: it behaves like a regression loss on the token head, rewarding predictions that are numerically close.
|
|
|
|
| 479 |
""")
|
| 480 |
|
| 481 |
+
st.markdown("#### ๐ Further Resources")
|
|
|
|
| 482 |
st.markdown("""
|
| 483 |
+
- ๐ [ICML 2025 Paper](https://arxiv.org/abs/2411.02083)
|
| 484 |
+
- ๐ [NTL Landing Page](https://tum-ai.github.io/number-token-loss/)
|
| 485 |
+
- ๐ป [GitHub Code](https://github.com/tum-ai/number-token-loss)
|
| 486 |
""")
|