Spaces:
Running
Running
update
Browse files- src/streamlit_app.py +386 -426
src/streamlit_app.py
CHANGED
@@ -1,392 +1,198 @@
|
|
|
|
|
|
|
|
1 |
import altair as alt
|
|
|
2 |
import pandas as pd
|
|
|
3 |
import streamlit_vertical_slider as svs
|
4 |
import torch
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Define options globally as it's used in initialization and UI
|
11 |
options = [str(i) for i in range(10)] + ["Text"]
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# --- Session State Initialization ---
|
14 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
15 |
-
if
|
16 |
st.session_state.running_demo = False
|
17 |
-
if
|
18 |
st.session_state.demo_step = 0
|
19 |
-
if
|
20 |
st.session_state.last_update_time = 0
|
21 |
-
if
|
22 |
st.session_state.loss_container = None
|
23 |
-
if
|
24 |
st.session_state.previous_chart_html = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Initialize states for sliders and ground_truth selector
|
27 |
# Using len(options) to correctly size for 0-9 + "Text"
|
28 |
for i in range(len(options)):
|
29 |
if f"slider_{i}" not in st.session_state:
|
30 |
-
st.session_state[f"slider_{i}"] =
|
31 |
-
if
|
32 |
-
st.session_state[
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
st.
|
36 |
|
37 |
st.markdown("""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
""")
|
43 |
|
44 |
-
# --- Scenario Definitions ---
|
45 |
-
scenarios = [
|
46 |
-
{
|
47 |
-
"name": "Probability mass at 0",
|
48 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
49 |
-
"ground_truth": "0",
|
50 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"name": "Probability mass at 0",
|
54 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
55 |
-
"ground_truth": "1",
|
56 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"name": "Probability mass at 0",
|
60 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
61 |
-
"ground_truth": "2",
|
62 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"name": "Probability mass at 0",
|
66 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
67 |
-
"ground_truth": "3",
|
68 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"name": "Probability mass at 0",
|
72 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
73 |
-
"ground_truth": "4",
|
74 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"name": "Probability mass at 0",
|
78 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
79 |
-
"ground_truth": "5",
|
80 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"name": "Probability mass at 0",
|
84 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
85 |
-
"ground_truth": "6",
|
86 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"name": "Probability mass at 0",
|
90 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
91 |
-
"ground_truth": "7",
|
92 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"name": "Probability mass at 0",
|
96 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
97 |
-
"ground_truth": "8",
|
98 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"name": "Probability mass at 0",
|
102 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
103 |
-
"ground_truth": "9",
|
104 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
105 |
-
},
|
106 |
-
|
107 |
-
|
108 |
-
{
|
109 |
-
"name": "Probability mass around 5",
|
110 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
111 |
-
"ground_truth": "0",
|
112 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"name": "Probability mass around 5",
|
116 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
117 |
-
"ground_truth": "1",
|
118 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"name": "Probability mass around 5",
|
122 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
123 |
-
"ground_truth": "2",
|
124 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"name": "Probability mass around 5",
|
128 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
129 |
-
"ground_truth": "3",
|
130 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"name": "Probability mass around 5",
|
134 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
135 |
-
"ground_truth": "4",
|
136 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"name": "Probability mass around ground truth (5)",
|
140 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
141 |
-
"ground_truth": "5",
|
142 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"name": "Probability mass around 5",
|
146 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
147 |
-
"ground_truth": "6",
|
148 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"name": "Probability mass around 5",
|
152 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
153 |
-
"ground_truth": "7",
|
154 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"name": "Probability mass around 5",
|
158 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
159 |
-
"ground_truth": "8",
|
160 |
-
"explanation": "Cross Entropy is high, NTL is higher but still penalizes less than CE because distribution knows it's a number."
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"name": "Probability mass around 5",
|
164 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
165 |
-
"ground_truth": "9",
|
166 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
167 |
-
},
|
168 |
-
|
169 |
-
{
|
170 |
-
"name": "Probability mass concentrated on 5",
|
171 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
172 |
-
"ground_truth": "0",
|
173 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"name": "Probability mass concentrated on 5",
|
177 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
178 |
-
"ground_truth": "1",
|
179 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"name": "Probability mass concentrated on 5",
|
183 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
184 |
-
"ground_truth": "2",
|
185 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"name": "Probability mass concentrated on 5",
|
189 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
190 |
-
"ground_truth": "3",
|
191 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"name": "Probability mass concentrated on 5",
|
195 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
196 |
-
"ground_truth": "4",
|
197 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"name": "Probability mass concentrated on 5",
|
201 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
202 |
-
"ground_truth": "5",
|
203 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"name": "Probability mass concentrated on 5",
|
207 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
208 |
-
"ground_truth": "6",
|
209 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
210 |
-
},
|
211 |
-
{
|
212 |
-
"name": "Probability mass concentrated on 5",
|
213 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
214 |
-
"ground_truth": "7",
|
215 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"name": "Probability mass concentrated on 5",
|
219 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
220 |
-
"ground_truth": "8",
|
221 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"name": "Probability mass concentrated on 5",
|
225 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
226 |
-
"ground_truth": "9",
|
227 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
228 |
-
},
|
229 |
-
|
230 |
-
|
231 |
-
{
|
232 |
-
"name": "Probability mass concentrated on 1",
|
233 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
234 |
-
"ground_truth": "0",
|
235 |
-
"explanation": "Both losses are low because the prediction is correct."
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"name": "Probability mass concentrated on 1",
|
239 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
240 |
-
"ground_truth": "1",
|
241 |
-
"explanation": "Both losses are low because the prediction is correct."
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"name": "Probability mass concentrated on 1",
|
245 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
246 |
-
"ground_truth": "2",
|
247 |
-
"explanation": "Both losses are low because the prediction is correct."
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"name": "Probability mass concentrated on 1",
|
251 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
252 |
-
"ground_truth": "3",
|
253 |
-
"explanation": "Both losses are low because the prediction is correct."
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"name": "Probability mass concentrated on 1",
|
257 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
258 |
-
"ground_truth": "4",
|
259 |
-
"explanation": "Both losses are low because the prediction is correct."
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"name": "Probability mass concentrated on 1",
|
263 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
264 |
-
"ground_truth": "5",
|
265 |
-
"explanation": "Both losses are low because the prediction is correct."
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"name": "Probability mass concentrated on 1",
|
269 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
270 |
-
"ground_truth": "6",
|
271 |
-
"explanation": "Both losses are low because the prediction is correct."
|
272 |
-
},
|
273 |
-
{
|
274 |
-
"name": "Probability mass concentrated on 1",
|
275 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
276 |
-
"ground_truth": "7",
|
277 |
-
"explanation": "Both losses are low because the prediction is correct."
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"name": "Probability mass concentrated on 1",
|
281 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
282 |
-
"ground_truth": "8",
|
283 |
-
"explanation": "Both losses are low because the prediction is correct."
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"name": "Probability mass concentrated on 1",
|
287 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
288 |
-
"ground_truth": "9",
|
289 |
-
"explanation": "Both losses are low because the prediction is correct."
|
290 |
-
},
|
291 |
-
|
292 |
-
|
293 |
-
{
|
294 |
-
"name": "Almost correct (1 vs 2)",
|
295 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
296 |
-
"ground_truth": "0",
|
297 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"name": "Almost correct (1 vs 2)",
|
301 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
302 |
-
"ground_truth": "1",
|
303 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"name": "Almost correct (1 vs 2)",
|
307 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
308 |
-
"ground_truth": "2",
|
309 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
310 |
-
},
|
311 |
-
{
|
312 |
-
"name": "Almost correct (1 vs 2)",
|
313 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
314 |
-
"ground_truth": "3",
|
315 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
316 |
-
}
|
317 |
-
]
|
318 |
|
319 |
-
|
|
|
|
|
|
|
|
|
320 |
def apply_scenario(step_idx):
|
321 |
-
scenario =
|
322 |
-
# These assignments modify session state. They must be done *before* the widgets
|
323 |
-
# are rendered in the script run that should display these new values.
|
324 |
for i, val in enumerate(scenario["values"]):
|
325 |
st.session_state[f"slider_{i}"] = val
|
326 |
-
st.session_state['ground_truth'] = scenario["ground_truth"]
|
327 |
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
st.session_state.running_demo = True
|
330 |
st.session_state.demo_step = 0
|
331 |
st.session_state.last_update_time = time.time()
|
332 |
-
apply_scenario(0)
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
def stop_demo():
|
336 |
st.session_state.running_demo = False
|
337 |
|
|
|
338 |
# --- Demo State Advancement Logic ---
|
339 |
# This block handles advancing the demo. If it advances, it updates session state
|
340 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
341 |
if st.session_state.running_demo:
|
|
|
342 |
current_time = time.time()
|
343 |
-
if current_time - st.session_state.last_update_time >
|
344 |
-
|
345 |
-
st.session_state.demo_step
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
|
|
|
|
349 |
|
350 |
# --- UI Rendering ---
|
351 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
352 |
|
353 |
if st.session_state.running_demo:
|
354 |
-
st.info(
|
355 |
-
|
|
|
|
|
|
|
356 |
if st.button("Stop Demo"):
|
357 |
-
|
358 |
st.rerun()
|
359 |
-
else:
|
360 |
-
|
361 |
-
|
362 |
-
st.
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
# Ground truth selectbox
|
380 |
-
st.selectbox(
|
381 |
-
"Ground Truth Token", options=options,
|
382 |
-
index=options.index(st.session_state['ground_truth']), # Display value from session state
|
383 |
-
key='ground_truth' # Links widget to st.session_state['ground_truth']
|
384 |
-
)
|
385 |
-
|
386 |
-
# Placeholder for charts and loss calculations that will be updated
|
387 |
-
# This section always reads the current st.session_state to generate its content.
|
388 |
-
|
389 |
-
current_prob_values_from_state = [st.session_state.get(f"slider_{j}", 1.0/len(options)) for j in range(len(options))]
|
390 |
total_from_state = sum(current_prob_values_from_state)
|
391 |
probs_for_charts = (
|
392 |
torch.ones(len(options)) / len(options)
|
@@ -394,112 +200,265 @@ probs_for_charts = (
|
|
394 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
395 |
)
|
396 |
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
398 |
if gt_choice_for_charts == "Text":
|
399 |
-
gt_index_for_charts = 10
|
400 |
gt_numeric_for_charts = None
|
401 |
else:
|
402 |
gt_index_for_charts = int(gt_choice_for_charts)
|
403 |
gt_numeric_for_charts = gt_index_for_charts
|
404 |
|
405 |
-
st.
|
406 |
-
|
407 |
-
df_dist["type"] = ["Ground Truth" if token == gt_choice_for_charts else "Prediction" for token in options]
|
408 |
-
chart = (
|
409 |
-
alt.Chart(df_dist).mark_bar().encode(
|
410 |
-
x=alt.X("token:N", title="Token", sort=options), # Ensure consistent sort order
|
411 |
-
y=alt.Y("probability:Q", title="Probability", scale=alt.Scale(domain=[0, 1])),
|
412 |
-
color=alt.Color("type:N", scale=alt.Scale(domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]), legend=alt.Legend(title="Token Type"))
|
413 |
-
).properties(height=300)
|
414 |
-
)
|
415 |
-
st.altair_chart(chart, use_container_width=True)
|
416 |
-
|
417 |
-
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
|
418 |
-
if gt_numeric_for_charts is None: # Text token
|
419 |
-
ntl_mse_loss = torch.tensor(float('nan')) # MSE not applicable for text
|
420 |
-
ntl_was_loss = torch.tensor(float('nan')) # WAS not applicable for text
|
421 |
-
else: # Numeric token
|
422 |
-
numeric_probs_for_loss = probs_for_charts[:10] # Probabilities for 0-9
|
423 |
-
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
|
424 |
-
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
|
425 |
-
if numeric_probs_sum > 1e-6 : # Avoid division by zero
|
426 |
-
normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
|
427 |
-
else:
|
428 |
-
normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)
|
429 |
|
|
|
430 |
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
-
|
434 |
-
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6 :
|
435 |
-
pred_value = torch.sum( (probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * loss_values_tensor)
|
436 |
-
elif gt_choice_for_charts != "Text": # if sum is zero, pred_value is ill-defined or 0
|
437 |
-
pred_value = torch.tensor(0.0)
|
438 |
-
else: # Should not happen if gt_numeric_for_charts is not None
|
439 |
-
pred_value = torch.tensor(float('nan'))
|
440 |
|
441 |
|
442 |
-
|
443 |
-
ntl_mse_loss = (pred_value - float(gt_numeric_for_charts)) ** 2
|
444 |
-
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
|
445 |
-
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
446 |
-
ntl_was_loss = torch.sum((probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * abs_diff)
|
447 |
-
elif gt_choice_for_charts != "Text":
|
448 |
-
ntl_was_loss = torch.tensor(0.0) # Or some other default if all numeric probs are zero
|
449 |
-
else:
|
450 |
-
ntl_was_loss = torch.tensor(float('nan'))
|
451 |
-
else:
|
452 |
-
ntl_mse_loss = torch.tensor(float('nan'))
|
453 |
-
ntl_was_loss = torch.tensor(float('nan'))
|
454 |
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
462 |
if was_val != "N/A":
|
463 |
loss_data["Loss"].append("NTL-WAS")
|
464 |
loss_data["Value"].append(was_val)
|
465 |
-
if
|
466 |
-
loss_data["Loss"].append("NTL-
|
467 |
-
loss_data["Value"].append(
|
468 |
|
469 |
loss_df = pd.DataFrame(loss_data)
|
470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
# ============== Chart Display ==============
|
472 |
-
# Create a single chart for loss visualization
|
473 |
-
st.subheader("Loss Comparison")
|
474 |
-
|
475 |
-
# Create an Altair chart that will look good and redraw cleanly
|
476 |
-
chart = alt.Chart(loss_df).mark_bar().encode(
|
477 |
-
x=alt.X('Loss:N', sort=loss_df["Loss"].tolist()),
|
478 |
-
y=alt.Y('Value:Q', scale=alt.Scale(domain=[0, max(loss_df["Value"].max() * 1.2, 20 if st.session_state.running_demo else 0.5)])),
|
479 |
-
color=alt.Color('Loss:N', scale=alt.Scale(
|
480 |
-
domain=['Cross Entropy', 'NTL-WAS', 'NTL-MSE'],
|
481 |
-
range=['steelblue', 'red', 'forestgreen']
|
482 |
-
)),
|
483 |
-
tooltip=['Loss', 'Value']
|
484 |
-
).properties(
|
485 |
-
height=300
|
486 |
-
)
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
)
|
|
|
497 |
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
# Display chart with the full container width
|
502 |
-
st.altair_chart(final_chart, use_container_width=True)
|
503 |
|
504 |
# --- Polling Rerun for Demo Mode ---
|
505 |
# If the demo is running and we haven't just advanced (which would have caused a rerun),
|
@@ -507,20 +466,21 @@ st.altair_chart(final_chart, use_container_width=True)
|
|
507 |
if st.session_state.running_demo:
|
508 |
# This check is implicitly: if we are here and demo is running, it means
|
509 |
# the time-based advance condition was NOT met in the block at the top.
|
510 |
-
time.sleep(
|
511 |
st.rerun()
|
512 |
|
513 |
-
|
514 |
st.markdown("""
|
515 |
-
###
|
|
|
|
|
516 |
|
517 |
-
|
518 |
-
- **Number Token Loss (NTL)**: Considers numerical proximity - predicting "7" when the true value is "8" is better than predicting "2".
|
519 |
""")
|
520 |
|
521 |
-
|
522 |
-
st.markdown("### Resources")
|
523 |
st.markdown("""
|
524 |
-
- [
|
525 |
-
- [
|
|
|
526 |
""")
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
|
4 |
import altair as alt
|
5 |
+
import numpy as np
|
6 |
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
import streamlit_vertical_slider as svs
|
9 |
import torch
|
10 |
+
|
11 |
+
from scenarios import dirac, gauss, make_bimodal_scenarios
|
12 |
+
|
13 |
+
logging.getLogger("streamlit.watcher.local_sources_watcher").setLevel(logging.ERROR)
|
14 |
+
|
15 |
+
DEMO_INTERVAL = 0.75
|
16 |
+
CE_SCALING = 0.25
|
17 |
+
MAX_LOSS_PLOT = 6
|
18 |
+
LAST_STEP = -1
|
19 |
+
|
20 |
|
21 |
# Define options globally as it's used in initialization and UI
|
22 |
options = [str(i) for i in range(10)] + ["Text"]
|
23 |
|
24 |
+
|
25 |
+
def compute_losses(probs: torch.Tensor, gt_token: str) -> tuple[float, float, float]:
|
26 |
+
"""Compute CE, NTL-MAE, NTL-WAS losses for the given probability vector and ground truth token."""
|
27 |
+
ce_loss = CE_SCALING * -torch.log(
|
28 |
+
torch.clamp(probs[options.index(gt_token)], min=1e-9)
|
29 |
+
)
|
30 |
+
|
31 |
+
numeric_mass = probs[:10].sum()
|
32 |
+
|
33 |
+
if gt_token == "Text" or numeric_mass < 1e-6:
|
34 |
+
return ce_loss.item(), 0.0, 0.0
|
35 |
+
|
36 |
+
gt_numeric = int(gt_token)
|
37 |
+
token_vals = torch.arange(10, dtype=torch.float32)
|
38 |
+
mae = numeric_mass * abs(torch.dot(token_vals, probs[:10]) - gt_numeric)
|
39 |
+
was = numeric_mass * torch.dot(probs[:10], torch.abs(token_vals - gt_numeric))
|
40 |
+
return round(ce_loss.item(), 3), round(mae.item(), 3), round(was.item(), 3)
|
41 |
+
|
42 |
+
|
43 |
# --- Session State Initialization ---
|
44 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
45 |
+
if "running_demo" not in st.session_state:
|
46 |
st.session_state.running_demo = False
|
47 |
+
if "demo_step" not in st.session_state:
|
48 |
st.session_state.demo_step = 0
|
49 |
+
if "last_update_time" not in st.session_state:
|
50 |
st.session_state.last_update_time = 0
|
51 |
+
if "loss_container" not in st.session_state:
|
52 |
st.session_state.loss_container = None
|
53 |
+
if "previous_chart_html" not in st.session_state:
|
54 |
st.session_state.previous_chart_html = ""
|
55 |
+
if "active_scenarios" not in st.session_state:
|
56 |
+
# default if you want one to load on first show
|
57 |
+
st.session_state.active_scenarios = dirac
|
58 |
+
if "loss_history" not in st.session_state:
|
59 |
+
st.session_state.loss_history = []
|
60 |
+
if "df_loss_plot" not in st.session_state:
|
61 |
+
# Initialize an empty DataFrame for loss history
|
62 |
+
st.session_state.df_loss_plot = pd.DataFrame(
|
63 |
+
columns=["step", "x_val", "Loss Type", "Loss Value"]
|
64 |
+
)
|
65 |
+
|
66 |
|
67 |
# Initialize states for sliders and ground_truth selector
|
68 |
# Using len(options) to correctly size for 0-9 + "Text"
|
69 |
for i in range(len(options)):
|
70 |
if f"slider_{i}" not in st.session_state:
|
71 |
+
st.session_state[f"slider_{i}"] = 0
|
72 |
+
if "ground_truth" not in st.session_state:
|
73 |
+
st.session_state["ground_truth"] = options[5]
|
74 |
+
if "manual_ground_truth" not in st.session_state:
|
75 |
+
st.session_state["manual_ground_truth"] = options[5]
|
76 |
+
if "demo_name" not in st.session_state:
|
77 |
+
st.session_state["demo_name"] = "Dirac"
|
78 |
+
|
79 |
|
80 |
+
st.title("NTL -- The Number Token Loss ๐")
|
81 |
+
|
82 |
+
st.markdown(
|
83 |
+
"""This is the interactive demo for our [ICML 2025](https://arxiv.org/abs/2411.02083) paper!๐
|
84 |
+
โก๏ธ NTL augments cross-entropy to help LMs reason better with numbers ๐ง
|
85 |
+
"""
|
86 |
+
)
|
87 |
|
88 |
+
st.subheader("Demo 1 โ NTL vs. Cross Entropy in 3 Scenarios")
|
89 |
|
90 |
st.markdown("""
|
91 |
+
1๏ธโฃ Pick a ground truth token: a digit (0โ9) or "Text" ๐ (simulates generic text tokens).
|
92 |
+
2๏ธโฃ Choose a demo:
|
93 |
+
- **Dirac** โก: All probability mass on one token.
|
94 |
+
- **Gaussian** ๐: Soft bell-curve around the true number.
|
95 |
+
- **Bimodal** ๐ฏ: Two peaks moving away from the target.
|
96 |
+
|
97 |
+
Watch how losses evolve as predictions get worse โ and see how NTL shines compared to CE! ๐
|
98 |
""")
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
if "ground_truth" not in st.session_state:
|
102 |
+
st.session_state["ground_truth"] = "4"
|
103 |
+
gt = st.selectbox("Ground Truth Token", options=options, key="ground_truth")
|
104 |
+
|
105 |
+
|
106 |
def apply_scenario(step_idx):
|
107 |
+
scenario = st.session_state.active_scenarios[step_idx]
|
|
|
|
|
108 |
for i, val in enumerate(scenario["values"]):
|
109 |
st.session_state[f"slider_{i}"] = val
|
|
|
110 |
|
111 |
+
|
112 |
+
def start_dirac_demo():
|
113 |
+
st.session_state.loss_history = []
|
114 |
+
st.session_state.active_scenarios = dirac
|
115 |
+
st.session_state.demo_name = "Dirac"
|
116 |
+
st.session_state.running_demo = True
|
117 |
+
st.session_state.demo_step = 0
|
118 |
+
st.session_state.last_update_time = time.time()
|
119 |
+
apply_scenario(0)
|
120 |
+
|
121 |
+
|
122 |
+
def start_gauss_demo():
|
123 |
+
st.session_state.loss_history = []
|
124 |
+
st.session_state.active_scenarios = gauss
|
125 |
+
st.session_state.demo_name = "Gauss"
|
126 |
st.session_state.running_demo = True
|
127 |
st.session_state.demo_step = 0
|
128 |
st.session_state.last_update_time = time.time()
|
129 |
+
apply_scenario(0)
|
130 |
+
|
131 |
+
|
132 |
+
def start_bimodal_demo():
|
133 |
+
st.session_state.loss_history = []
|
134 |
+
gt = st.session_state["ground_truth"]
|
135 |
+
st.session_state.active_scenarios = make_bimodal_scenarios(gt, options)
|
136 |
+
|
137 |
+
st.session_state.demo_name = f"Bimodal (GT={gt})"
|
138 |
+
st.session_state.running_demo = True
|
139 |
+
st.session_state.demo_step = 0
|
140 |
+
st.session_state.last_update_time = time.time()
|
141 |
+
apply_scenario(0)
|
142 |
+
|
143 |
|
144 |
def stop_demo():
|
145 |
st.session_state.running_demo = False
|
146 |
|
147 |
+
|
148 |
# --- Demo State Advancement Logic ---
|
149 |
# This block handles advancing the demo. If it advances, it updates session state
|
150 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
151 |
if st.session_state.running_demo:
|
152 |
+
scenario = st.session_state.active_scenarios
|
153 |
current_time = time.time()
|
154 |
+
if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
|
155 |
+
# if we havenโt yet shown the last scenario, advance
|
156 |
+
if st.session_state.demo_step < len(scenario) - 1:
|
157 |
+
st.session_state.demo_step += 1
|
158 |
+
apply_scenario(st.session_state.demo_step)
|
159 |
+
st.session_state.last_update_time = current_time
|
160 |
+
# st.rerun() # not needed, leading to too many reruns
|
161 |
+
else:
|
162 |
+
# we just displayed the final case โ stop
|
163 |
+
st.session_state.running_demo = False
|
164 |
|
165 |
# --- UI Rendering ---
|
166 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
167 |
|
168 |
if st.session_state.running_demo:
|
169 |
+
st.info(
|
170 |
+
f"Showing scenario {st.session_state.demo_step + 1}"
|
171 |
+
f"/{len(st.session_state.active_scenarios)}: "
|
172 |
+
f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
|
173 |
+
)
|
174 |
if st.button("Stop Demo"):
|
175 |
+
st.session_state.running_demo = False
|
176 |
st.rerun()
|
177 |
+
else:
|
178 |
+
col1, col2, col3 = st.columns(3)
|
179 |
+
with col1:
|
180 |
+
if st.button("Run: Dirac"):
|
181 |
+
start_dirac_demo()
|
182 |
+
st.rerun()
|
183 |
+
with col2:
|
184 |
+
if st.button("Run: Gauss"):
|
185 |
+
start_gauss_demo()
|
186 |
+
st.rerun()
|
187 |
+
with col3:
|
188 |
+
if st.button("Run: Bimodal"):
|
189 |
+
start_bimodal_demo()
|
190 |
+
st.rerun()
|
191 |
+
|
192 |
+
current_prob_values_from_state = [
|
193 |
+
st.session_state.get(f"slider_{j}", 0)
|
194 |
+
for j in range(len(options)) # 1.0 / len(options)) for j in range(len(options))
|
195 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
total_from_state = sum(current_prob_values_from_state)
|
197 |
probs_for_charts = (
|
198 |
torch.ones(len(options)) / len(options)
|
|
|
200 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
201 |
)
|
202 |
|
203 |
+
# Use manual GT token when not in running demo
|
204 |
+
gt_choice_for_charts = (
|
205 |
+
st.session_state["manual_ground_truth"]
|
206 |
+
if not st.session_state.running_demo
|
207 |
+
else st.session_state["ground_truth"]
|
208 |
+
)
|
209 |
if gt_choice_for_charts == "Text":
|
210 |
+
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
|
211 |
gt_numeric_for_charts = None
|
212 |
else:
|
213 |
gt_index_for_charts = int(gt_choice_for_charts)
|
214 |
gt_numeric_for_charts = gt_index_for_charts
|
215 |
|
216 |
+
gt = st.session_state["ground_truth"]
|
217 |
+
demo_name = st.session_state["demo_name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
st.markdown(f'#### Predicted distribution (<span style="color:darkgreen;">ground truth: {gt}</span>)', unsafe_allow_html=True)
|
220 |
|
221 |
+
df_dist = pd.DataFrame(
|
222 |
+
{"token": options, "probability": probs_for_charts.numpy().round(2)}
|
223 |
+
)
|
224 |
+
df_dist["is_gt"] = df_dist["token"] == gt
|
225 |
+
|
226 |
+
bars = (
|
227 |
+
alt.Chart(df_dist)
|
228 |
+
.mark_bar(color="dodgerblue", size=40)
|
229 |
+
.encode(
|
230 |
+
x=alt.X(
|
231 |
+
"token:N",
|
232 |
+
title="Token",
|
233 |
+
sort=options,
|
234 |
+
axis=alt.Axis(
|
235 |
+
labelAngle=0,
|
236 |
+
labelFontSize=14,
|
237 |
+
titleFontSize=16,
|
238 |
+
labelAlign="center",
|
239 |
+
labelFlush=False,
|
240 |
+
),
|
241 |
+
),
|
242 |
+
color=alt.condition(
|
243 |
+
"datum.is_gt",
|
244 |
+
alt.value("darkgreen"), # color for ground truth
|
245 |
+
alt.value("dodgerblue") # color for others
|
246 |
+
),
|
247 |
+
y=alt.Y(
|
248 |
+
"probability:Q",
|
249 |
+
title="Probability",
|
250 |
+
scale=alt.Scale(domain=[0, 1]),
|
251 |
+
axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
|
252 |
+
),
|
253 |
+
tooltip=[
|
254 |
+
alt.Tooltip("token:N", title="Token"),
|
255 |
+
alt.Tooltip("probability:Q", title="Predicted Prob.", format=".2f"),
|
256 |
+
alt.Tooltip("is_gt:N", title="Ground Truth")
|
257 |
+
]
|
258 |
+
)
|
259 |
+
)
|
260 |
|
261 |
+
st.altair_chart(bars.properties(height=200), use_container_width=True, theme="streamlit")
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
|
264 |
+
ce_val, mae_val, was_val = compute_losses(probs_for_charts, gt_choice_for_charts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
|
267 |
+
if (
|
268 |
+
st.session_state.running_demo
|
269 |
+
and len(st.session_state.loss_history) < st.session_state.demo_step + 1
|
270 |
+
):
|
271 |
+
step = st.session_state.demo_step
|
272 |
+
scenario = st.session_state.active_scenarios[step]
|
273 |
+
ce, mae, was = compute_losses(probs_for_charts, gt_choice_for_charts)
|
274 |
|
275 |
+
# pick x_val differently for bimodal vs others
|
276 |
+
if st.session_state.demo_name.startswith("Bimodal"):
|
277 |
+
x_val = scenario["name"] # e.g. "(4,4)", "(3,5)", โฆ
|
278 |
+
else:
|
279 |
+
# exactly like before:
|
280 |
+
best_idx = np.argmax(scenario["values"])
|
281 |
+
x_val = options[best_idx] # "0", "1", โฆ, or "Text"
|
282 |
+
|
283 |
+
st.session_state.loss_history.append(
|
284 |
+
{
|
285 |
+
"step": step,
|
286 |
+
"x_val": x_val,
|
287 |
+
"Cross Entropy": ce,
|
288 |
+
"NTL-MAE": mae,
|
289 |
+
"NTL-WAS": was,
|
290 |
+
}
|
291 |
+
)
|
292 |
+
st.session_state.df_loss_plot = pd.DataFrame(st.session_state.loss_history).melt(id_vars=["step", "x_val"],
|
293 |
+
value_vars=["Cross Entropy", "NTL-MAE", "NTL-WAS"],
|
294 |
+
var_name="Loss Type",
|
295 |
+
value_name="Loss Value")
|
296 |
|
297 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
298 |
if was_val != "N/A":
|
299 |
loss_data["Loss"].append("NTL-WAS")
|
300 |
loss_data["Value"].append(was_val)
|
301 |
+
if mae_val != "N/A":
|
302 |
+
loss_data["Loss"].append("NTL-MAE")
|
303 |
+
loss_data["Value"].append(mae_val)
|
304 |
|
305 |
loss_df = pd.DataFrame(loss_data)
|
306 |
|
307 |
+
if st.session_state.demo_name.startswith("Bimodal"):
|
308 |
+
domain = [sc["name"] for sc in st.session_state.active_scenarios]
|
309 |
+
x_title = f"Offset from GT {st.session_state['ground_truth']}"
|
310 |
+
else:
|
311 |
+
domain = options
|
312 |
+
x_title = f"Maximum of predicted {st.session_state['demo_name']} distribution"
|
313 |
+
|
314 |
+
|
315 |
# ============== Chart Display ==============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
|
318 |
+
st.markdown("#### Loss as a function of predicted distribution")
|
319 |
+
|
320 |
+
grouped_chart = (
|
321 |
+
alt.Chart(st.session_state.df_loss_plot)
|
322 |
+
.mark_bar()
|
323 |
+
.encode(
|
324 |
+
x=alt.X(
|
325 |
+
"x_val:N",
|
326 |
+
title=x_title,
|
327 |
+
sort=domain,
|
328 |
+
scale=alt.Scale(domain=domain),
|
329 |
+
axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
|
330 |
+
),
|
331 |
+
y=alt.Y(
|
332 |
+
"Loss Value:Q",
|
333 |
+
title="Loss Value",
|
334 |
+
scale=alt.Scale(domain=[0, MAX_LOSS_PLOT], nice=False, clamp=True),
|
335 |
+
axis=alt.Axis(labelFontSize=14, titleFontSize=16),
|
336 |
+
),
|
337 |
+
color=alt.Color(
|
338 |
+
"Loss Type:N",
|
339 |
+
scale=alt.Scale(
|
340 |
+
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
|
341 |
+
range=["red", "limegreen", "blueviolet"],
|
342 |
+
),
|
343 |
+
legend=alt.Legend(
|
344 |
+
title="",
|
345 |
+
orient="top",
|
346 |
+
direction="horizontal",
|
347 |
+
columns=3,
|
348 |
+
),
|
349 |
+
),
|
350 |
+
xOffset="Loss Type:N", # grouped bars
|
351 |
+
tooltip=[
|
352 |
+
alt.Tooltip("x_val:N", title="Scenario"),
|
353 |
+
alt.Tooltip("Loss Type:N", title="Loss Type"),
|
354 |
+
alt.Tooltip("Loss Value:Q", title="Value", format=".3f"),
|
355 |
+
],
|
356 |
+
)
|
357 |
+
.properties(height=250)
|
358 |
)
|
359 |
+
st.altair_chart(grouped_chart, use_container_width=True, theme="streamlit")
|
360 |
|
361 |
+
|
362 |
+
# Create a single chart for loss visualization
|
363 |
+
if not st.session_state.running_demo:
|
364 |
+
for i in range(len(options)):
|
365 |
+
st.session_state[f"slider_{i}"] = 0.0
|
366 |
+
st.session_state.demo_step = 0
|
367 |
+
|
368 |
+
st.subheader("Demo 2 -- Manual loss comparison")
|
369 |
+
st.subheader("๐งช Demo 2 โ Craft your own distribution")
|
370 |
+
st.markdown("""
|
371 |
+
This demo gives you more control but is harder to interpret. See it as a playground! ๐จ
|
372 |
+
Manually adjust the sliders to change the predicted probabilities for each token.
|
373 |
+
The demo normalizes the values to form a valid probability distribution and calculates the losses.
|
374 |
+
|
375 |
+
๐ฃ **Steps:**
|
376 |
+
- Use the **vertical sliders** to allocate probability to each token.
|
377 |
+
- Choose the correct **Ground Truth Token** (0โ9 or "Text" ๐).
|
378 |
+
- Observe how each loss function reacts.
|
379 |
+
|
380 |
+
๐ก **Tip:** Want to trick the loss? Try putting all mass on the wrong token or spread it wildly. See how NTL handles it! ๐
|
381 |
+
""")
|
382 |
+
|
383 |
+
manual_gt = st.selectbox(
|
384 |
+
"Ground Truth Token",
|
385 |
+
options=options,
|
386 |
+
key="manual_ground_truth",
|
387 |
+
)
|
388 |
+
|
389 |
+
loss_df = pd.DataFrame(
|
390 |
+
{
|
391 |
+
"Loss": ["Cross Entropy", "NTL-MAE", "NTL-WAS"],
|
392 |
+
"Value": [ce_val, mae_val, was_val],
|
393 |
+
}
|
394 |
+
)
|
395 |
+
|
396 |
+
# Sliders and Ground Truth Selector
|
397 |
+
# These widgets will read their initial values from st.session_state.
|
398 |
+
# User interactions will update st.session_state directly due to their keys.
|
399 |
+
st.markdown("#### Adjust the predicted token probability")
|
400 |
+
cols = st.columns(len(options))
|
401 |
+
for i, col in enumerate(cols):
|
402 |
+
label = options[i] # Use token name directly for label
|
403 |
+
with col:
|
404 |
+
svs.vertical_slider(
|
405 |
+
label=label,
|
406 |
+
min_value=0.0,
|
407 |
+
max_value=1.0,
|
408 |
+
step=0.01,
|
409 |
+
height=50,
|
410 |
+
key=f"slider_{i}",
|
411 |
+
slider_color="green",
|
412 |
+
track_color="lightgray",
|
413 |
+
thumb_color="black",
|
414 |
+
)
|
415 |
+
|
416 |
+
chart = (
|
417 |
+
alt.Chart(loss_df)
|
418 |
+
.mark_bar()
|
419 |
+
.encode(
|
420 |
+
x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
|
421 |
+
y=alt.Y(
|
422 |
+
"Value:Q",
|
423 |
+
scale=alt.Scale(
|
424 |
+
domain=[
|
425 |
+
0,
|
426 |
+
max(
|
427 |
+
loss_df["Value"].max() * 1.2,
|
428 |
+
20 if st.session_state.running_demo else 0.5,
|
429 |
+
),
|
430 |
+
]
|
431 |
+
),
|
432 |
+
),
|
433 |
+
color=alt.Color(
|
434 |
+
"Loss:N",
|
435 |
+
scale=alt.Scale(
|
436 |
+
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
|
437 |
+
range=["orangered", "limegreen", "blueviolet"],
|
438 |
+
),
|
439 |
+
),
|
440 |
+
tooltip=["Loss", "Value"],
|
441 |
+
)
|
442 |
+
.properties(height=300)
|
443 |
+
)
|
444 |
+
|
445 |
+
text = chart.mark_text(
|
446 |
+
align="center", baseline="bottom", dy=-5, fontSize=14
|
447 |
+
).encode(text=alt.Text("Value:Q", format=".3f"))
|
448 |
+
final_chart = chart + text
|
449 |
+
st.altair_chart(final_chart, use_container_width=True)
|
450 |
+
|
451 |
+
|
452 |
+
# # Add value labels on top of bars
|
453 |
+
# text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
|
454 |
+
# text=alt.Text("Value:Q", format=".3f")
|
455 |
+
# )
|
456 |
+
|
457 |
+
# # Combine chart and text
|
458 |
+
# final_chart = chart + text
|
459 |
|
460 |
# Display chart with the full container width
|
461 |
+
# st.altair_chart(final_chart, use_container_width=True)
|
462 |
|
463 |
# --- Polling Rerun for Demo Mode ---
|
464 |
# If the demo is running and we haven't just advanced (which would have caused a rerun),
|
|
|
466 |
if st.session_state.running_demo:
|
467 |
# This check is implicitly: if we are here and demo is running, it means
|
468 |
# the time-based advance condition was NOT met in the block at the top.
|
469 |
+
time.sleep(DEMO_INTERVAL)
|
470 |
st.rerun()
|
471 |
|
472 |
+
|
473 |
st.markdown("""
|
474 |
+
### ๐ค TL;DR โ Why NTL?
|
475 |
+
Cross Entropy only cares if the prediction is exactly right or wrong โโ
โ it doesnโt care *how close* a guess is!
|
476 |
+
Thatโs bad for LLMs doing math and numeric reasoning ๐งฎ.
|
477 |
|
478 |
+
๐ฅ NTL fixes that: it behaves like a regression loss on the token head, rewarding predictions that are numerically close.
|
|
|
479 |
""")
|
480 |
|
481 |
+
st.markdown("#### ๐ Further Resources")
|
|
|
482 |
st.markdown("""
|
483 |
+
- ๐ [ICML 2025 Paper](https://arxiv.org/abs/2411.02083)
|
484 |
+
- ๐ [NTL Landing Page](https://tum-ai.github.io/number-token-loss/)
|
485 |
+
- ๐ป [GitHub Code](https://github.com/tum-ai/number-token-loss)
|
486 |
""")
|