import inspect import math from typing import Callable, List, Optional, Tuple, Union from einops import rearrange import torch from torch import nn import torch.nn.functional as F from torch import Tensor from diffusers.models.attention_processor import Attention class LoRALinearLayer(nn.Module): def __init__( self, in_features: int, out_features: int, rank: int = 4, network_alpha: Optional[float] = None, device: Optional[Union[torch.device, str]] = None, dtype: Optional[torch.dtype] = None, cond_width=512, cond_height=512, number=0, n_loras=1 ): super().__init__() self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning self.network_alpha = network_alpha self.rank = rank self.out_features = out_features self.in_features = in_features nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) self.cond_height = cond_height self.cond_width = cond_width self.number = number self.n_loras = n_loras def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype #### batch_size = hidden_states.shape[0] cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 block_size = hidden_states.shape[1] - cond_size * self.n_loras shape = (batch_size, hidden_states.shape[1], 3072) mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) mask[:, :block_size+self.number*cond_size, :] = 0 mask[:, block_size+(self.number+1)*cond_size:, :] = 0 hidden_states = mask * hidden_states #### down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if self.network_alpha is not None: up_hidden_states *= self.network_alpha / self.rank return up_hidden_states.to(orig_dtype) class MultiSingleStreamBlockLoraProcessor(nn.Module): def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.cond_width = cond_width self.cond_height = cond_height self.q_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.lora_weights = lora_weights self.bank_attn = None self.bank_kv = [] def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond = False ) -> torch.FloatTensor: batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape scaled_seq_len = hidden_states.shape[1] cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 block_size = scaled_seq_len - cond_size * self.n_loras scaled_cond_size = cond_size scaled_block_size = block_size if len(self.bank_kv)== 0: cache = True else: cache = False if cache: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) self.bank_kv.append(key[:, :, scaled_block_size:, :]) self.bank_kv.append(value[:, :, scaled_block_size:, :]) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) num_cond_blocks = self.n_loras mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) mask[ :scaled_block_size, :] = 0 # First block_size row for i in range(num_cond_blocks): start = i * scaled_cond_size + scaled_block_size end = (i + 1) * scaled_cond_size + scaled_block_size mask[start:end, start:end] = 0 # Diagonal blocks mask = mask * -1e10 mask = mask.to(query.dtype) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask) self.bank_attn = hidden_states[:, :, scaled_block_size:, :] else: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = query.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2) value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query = query[:, :, :scaled_block_size, :] hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) cond_hidden_states = hidden_states[:, block_size:,:] hidden_states = hidden_states[:, : block_size,:] return hidden_states if not use_cond else (hidden_states, cond_hidden_states) class MultiDoubleStreamBlockLoraProcessor(nn.Module): def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1): super().__init__() # Initialize a list to store the LoRA layers self.n_loras = n_loras self.cond_width = cond_width self.cond_height = cond_height self.q_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.k_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.v_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.proj_loras = nn.ModuleList([ LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) for i in range(n_loras) ]) self.lora_weights = lora_weights self.bank_attn = None self.bank_kv = [] def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, use_cond=False, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 block_size = hidden_states.shape[1] - cond_size * self.n_loras scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1] scaled_cond_size = cond_size scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras # `context` projections. inner_dim = 3072 head_dim = inner_dim // attn.heads encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) if len(self.bank_kv)== 0: cache = True else: cache = False if cache: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) for i in range(self.n_loras): query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) self.bank_kv.append(key[:, :, block_size:, :]) self.bank_kv.append(value[:, :, block_size:, :]) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) num_cond_blocks = self.n_loras mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) mask[ :scaled_block_size, :] = 0 # First block_size row for i in range(num_cond_blocks): start = i * scaled_cond_size + scaled_block_size end = (i + 1) * scaled_cond_size + scaled_block_size mask[start:end, start:end] = 0 # Diagonal blocks mask = mask * -1e10 mask = mask.to(query.dtype) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask) self.bank_attn = hidden_states[:, :, scaled_block_size:, :] else: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = query.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2) value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query = query[:, :, :scaled_block_size, :] hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # Linear projection (with LoRA weight applied to each proj layer) hidden_states = attn.to_out[0](hidden_states) for i in range(self.n_loras): hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) cond_hidden_states = hidden_states[:, block_size:,:] hidden_states = hidden_states[:, :block_size,:] return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)