Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import json | |
import time | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
import gradio as gr | |
from safetensors.torch import save_file | |
from src.pipeline import FluxPipeline | |
from src.transformer_flux import FluxTransformer2DModel | |
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora | |
# Initialize the image processor | |
base_path = "black-forest-labs/FLUX.1-dev" | |
lora_base_path = "./models" | |
style_lora_base_path = "Shakker-Labs" | |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) | |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) | |
pipe.transformer = transformer | |
pipe.to("cuda") | |
def clear_cache(transformer): | |
for name, attn_processor in transformer.attn_processors.items(): | |
attn_processor.bank_kv.clear() | |
# Define the Gradio interface | |
def single_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora=None): | |
# Set the control type | |
if control_type == "subject": | |
lora_path = os.path.join(lora_base_path, "subject.safetensors") | |
elif control_type == "pose": | |
lora_path = os.path.join(lora_base_path, "pose.safetensors") | |
elif control_type == "inpainting": | |
lora_path = os.path.join(lora_base_path, "inpainting.safetensors") | |
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512) | |
# Set the style LoRA | |
if style_lora=="None": | |
pass | |
else: | |
if style_lora == "Simple_Sketch": | |
pipe.unload_lora_weights() | |
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Children-Simple-Sketch") | |
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-children-simple-sketch.safetensors") | |
if style_lora == "Text_Poster": | |
pipe.unload_lora_weights() | |
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Text-Poster") | |
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-Text-Poster.safetensors") | |
if style_lora == "Vector_Style": | |
pipe.unload_lora_weights() | |
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Vector-Journey") | |
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-Vector-Journey.safetensors") | |
# Process the image | |
subject_imgs = [subject_img] if subject_img else [] | |
spatial_imgs = [spatial_img] if spatial_img else [] | |
image = pipe( | |
prompt, | |
height=int(height), | |
width=int(width), | |
guidance_scale=3.5, | |
num_inference_steps=25, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
subject_images=subject_imgs, | |
spatial_images=spatial_imgs, | |
cond_size=512, | |
).images[0] | |
clear_cache(pipe.transformer) | |
return image | |
# Define the Gradio interface | |
def multi_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed): | |
subject_path = os.path.join(lora_base_path, "subject.safetensors") | |
inpainting_path = os.path.join(lora_base_path, "inpainting.safetensors") | |
set_multi_lora(pipe.transformer, [subject_path, inpainting_path], lora_weights=[[1],[1]],cond_size=512) | |
# Process the image | |
subject_imgs = [subject_img] if subject_img else [] | |
spatial_imgs = [spatial_img] if spatial_img else [] | |
image = pipe( | |
prompt, | |
height=int(height), | |
width=int(width), | |
guidance_scale=3.5, | |
num_inference_steps=25, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
subject_images=subject_imgs, | |
spatial_images=spatial_imgs, | |
cond_size=512, | |
).images[0] | |
clear_cache(pipe.transformer) | |
return image | |
# Define the Gradio interface components | |
control_types = ["pose", "subject", "inpainting"] | |
style_loras = ["None", "Simple_Sketch", "Text_Poster", "Vector_Style"] | |
# Example data | |
single_examples = [ | |
["A SKS in the library", Image.open("./test_imgs/subject1.png"), None, 768, 768, 5, "subject", "None"], | |
["sketched style,A joyful girl with balloons floats above a city wearing a hat and striped pants", None, Image.open("./test_imgs/spatial0.png"), 768, 512, 42, "pose", "Simple_Sketch"], | |
["In a picturesque village, a narrow cobblestone street with rustic stone buildings, colorful blinds, and lush green spaces, a cartoon man drawn with simple lines and solid colors stands in the foreground, wearing a red shirt, beige work pants, and brown shoes, carrying a strap on his shoulder. The scene features warm and enticing colors, a pleasant fusion of nature and architecture, and the camera's perspective on the street clearly shows the charming and quaint environment., Integrating elements of reality and cartoon.", None, Image.open("./test_imgs/spatial1.png"), 768, 768, 1, "pose", "Vector_Style"], | |
] | |
multi_examples = [ | |
["A SKS on the car", Image.open("./test_imgs/subject2.png"), Image.open("./test_imgs/spatial2.png"), 768, 768, 7], | |
] | |
# Create the Gradio Blocks interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Generation with EasyControl") | |
gr.Markdown("Generate images using EasyControl with different control types and style LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)") | |
with gr.Tab("Single Condition Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
**Prompt** (When using LoRA, please try the recommended prompts available at the following links: | |
[FLUX.1-dev-LoRA-Text-Poster](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Text-Poster), | |
[FLUX.1-dev-LoRA-Children-Simple-Sketch](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch), | |
[FLUX.1-dev-LoRA-Vector-Journey](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Vector-Journey)) | |
""") | |
prompt = gr.Textbox(label="Prompt") | |
subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件 | |
spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件 | |
height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768) | |
width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768) | |
seed = gr.Number(label="Seed", value=42) | |
control_type = gr.Dropdown(choices=control_types, label="Control Type") | |
style_lora = gr.Dropdown(choices=style_loras, label="Style LoRA") | |
single_generate_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
single_output_image = gr.Image(label="Generated Image") | |
# Add examples for Single Condition Generation | |
gr.Examples( | |
examples=single_examples, | |
inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora], | |
outputs=single_output_image, | |
fn=single_condition_generate_image, | |
cache_examples=False, # 缓存示例结果以加快加载速度 | |
label="Single Condition Examples" | |
) | |
with gr.Tab("Multi-Condition Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
multi_prompt = gr.Textbox(label="Prompt") | |
multi_subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件 | |
multi_spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件 | |
multi_height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768) | |
multi_width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768) | |
multi_seed = gr.Number(label="Seed", value=42) | |
multi_generate_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
multi_output_image = gr.Image(label="Generated Image") | |
# Add examples for Multi-Condition Generation | |
gr.Examples( | |
examples=multi_examples, | |
inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed], | |
outputs=multi_output_image, | |
fn=multi_condition_generate_image, | |
cache_examples=False, # 缓存示例结果以加快加载速度 | |
label="Multi-Condition Examples" | |
) | |
# Link the buttons to the functions | |
single_generate_btn.click( | |
single_condition_generate_image, | |
inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora], | |
outputs=single_output_image | |
) | |
multi_generate_btn.click( | |
multi_condition_generate_image, | |
inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed], | |
outputs=multi_output_image | |
) | |
# Launch the Gradio app | |
demo.queue().launch() |