EasyControl / app.py
jamesliu1217's picture
Update app.py
fdbf3a9 verified
raw
history blame
9 kB
import spaces
import os
import json
import time
import torch
from PIL import Image
from tqdm import tqdm
import gradio as gr
from safetensors.torch import save_file
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
# Initialize the image processor
base_path = "black-forest-labs/FLUX.1-dev"
lora_base_path = "./models"
style_lora_base_path = "Shakker-Labs"
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe.transformer = transformer
pipe.to("cuda")
def clear_cache(transformer):
for name, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
# Define the Gradio interface
@spaces.GPU()
def single_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora=None):
# Set the control type
if control_type == "subject":
lora_path = os.path.join(lora_base_path, "subject.safetensors")
elif control_type == "pose":
lora_path = os.path.join(lora_base_path, "pose.safetensors")
elif control_type == "inpainting":
lora_path = os.path.join(lora_base_path, "inpainting.safetensors")
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
# Set the style LoRA
if style_lora=="None":
pass
else:
if style_lora == "Simple_Sketch":
pipe.unload_lora_weights()
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Children-Simple-Sketch")
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-children-simple-sketch.safetensors")
if style_lora == "Text_Poster":
pipe.unload_lora_weights()
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Text-Poster")
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-Text-Poster.safetensors")
if style_lora == "Vector_Style":
pipe.unload_lora_weights()
style_lora_path = os.path.join(style_lora_base_path, "FLUX.1-dev-LoRA-Vector-Journey")
pipe.load_lora_weights(style_lora_path, weight_name="FLUX-dev-lora-Vector-Journey.safetensors")
# Process the image
subject_imgs = [subject_img] if subject_img else []
spatial_imgs = [spatial_img] if spatial_img else []
image = pipe(
prompt,
height=int(height),
width=int(width),
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
subject_images=subject_imgs,
spatial_images=spatial_imgs,
cond_size=512,
).images[0]
clear_cache(pipe.transformer)
return image
# Define the Gradio interface
@spaces.GPU()
def multi_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed):
subject_path = os.path.join(lora_base_path, "subject.safetensors")
inpainting_path = os.path.join(lora_base_path, "inpainting.safetensors")
set_multi_lora(pipe.transformer, [subject_path, inpainting_path], lora_weights=[[1],[1]],cond_size=512)
# Process the image
subject_imgs = [subject_img] if subject_img else []
spatial_imgs = [spatial_img] if spatial_img else []
image = pipe(
prompt,
height=int(height),
width=int(width),
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
subject_images=subject_imgs,
spatial_images=spatial_imgs,
cond_size=512,
).images[0]
clear_cache(pipe.transformer)
return image
# Define the Gradio interface components
control_types = ["subject", "pose", "inpainting"]
style_loras = ["Simple_Sketch", "Text_Poster", "Vector_Style", "None"]
# Example data
single_examples = [
["A SKS in the library", Image.open("./test_imgs/subject1.png"), None, 768, 768, 5, "subject", "None"],
["In a picturesque village, a narrow cobblestone street with rustic stone buildings, colorful blinds, and lush green spaces, a cartoon man drawn with simple lines and solid colors stands in the foreground, wearing a red shirt, beige work pants, and brown shoes, carrying a strap on his shoulder. The scene features warm and enticing colors, a pleasant fusion of nature and architecture, and the camera's perspective on the street clearly shows the charming and quaint environment., Integrating elements of reality and cartoon.", None, Image.open("./test_imgs/spatial1.png"), 768, 768, 1, "pose", "Vector_Style"],
]
multi_examples = [
["A SKS on the car", Image.open("./test_imgs/subject2.png"), Image.open("./test_imgs/spatial2.png"), 768, 768, 7],
]
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Image Generation with EasyControl")
gr.Markdown("Generate images using EasyControl with different control types and style LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
with gr.Tab("Single Condition Generation"):
with gr.Row():
with gr.Column():
gr.Markdown("""
**Prompt** (When using LoRA, please try the recommended prompts available at the following links:
[FLUX.1-dev-LoRA-Text-Poster](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Text-Poster),
[FLUX.1-dev-LoRA-Children-Simple-Sketch](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Children-Simple-Sketch),
[FLUX.1-dev-LoRA-Vector-Journey](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Vector-Journey))
""")
prompt = gr.Textbox(label="Prompt")
subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件
spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件
height = gr.Slider(minimum=256, maximum=896, step=64, label="Height", value=768)
width = gr.Slider(minimum=256, maximum=896, step=64, label="Width", value=768)
seed = gr.Number(label="Seed", value=42)
control_type = gr.Dropdown(choices=control_types, label="Control Type")
style_lora = gr.Dropdown(choices=style_loras, label="Style LoRA")
single_generate_btn = gr.Button("Generate Image")
with gr.Column():
single_output_image = gr.Image(label="Generated Image")
# Add examples for Single Condition Generation
gr.Examples(
examples=single_examples,
inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora],
outputs=single_output_image,
fn=single_condition_generate_image,
cache_examples=False, # 缓存示例结果以加快加载速度
label="Single Condition Examples"
)
with gr.Tab("Multi-Condition Generation"):
with gr.Row():
with gr.Column():
multi_prompt = gr.Textbox(label="Prompt")
multi_subject_img = gr.Image(label="Subject Image", type="pil") # 上传图像文件
multi_spatial_img = gr.Image(label="Spatial Image", type="pil") # 上传图像文件
multi_height = gr.Slider(minimum=256, maximum=896, step=64, label="Height", value=768)
multi_width = gr.Slider(minimum=256, maximum=896, step=64, label="Width", value=768)
multi_seed = gr.Number(label="Seed", value=42)
multi_generate_btn = gr.Button("Generate Image")
with gr.Column():
multi_output_image = gr.Image(label="Generated Image")
# Add examples for Multi-Condition Generation
gr.Examples(
examples=multi_examples,
inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed],
outputs=multi_output_image,
fn=multi_condition_generate_image,
cache_examples=False, # 缓存示例结果以加快加载速度
label="Multi-Condition Examples"
)
# Link the buttons to the functions
single_generate_btn.click(
single_condition_generate_image,
inputs=[prompt, subject_img, spatial_img, height, width, seed, control_type, style_lora],
outputs=single_output_image
)
multi_generate_btn.click(
multi_condition_generate_image,
inputs=[multi_prompt, multi_subject_img, multi_spatial_img, multi_height, multi_width, multi_seed],
outputs=multi_output_image
)
# Launch the Gradio app
demo.queue().launch()