Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from diffusers.image_processor import (VaeImageProcessor) | |
| from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin | |
| from diffusers.models.autoencoders import AutoencoderKL | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from torchvision.transforms.functional import pad | |
| from .transformer_flux import FluxTransformer2DModel | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def prepare_latent_image_ids_(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x | |
| return latent_image_ids | |
| def prepare_latent_subject_ids(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype): | |
| latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype) | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| scale_h = original_height / target_height | |
| scale_w = original_width / target_width | |
| latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype) | |
| latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h | |
| latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w | |
| cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape | |
| cond_latent_image_ids = latent_image_ids_resized.reshape( | |
| cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels | |
| ) | |
| return latent_image_ids, cond_latent_image_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 64 | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| height = height // vae_scale_factor | |
| width = width // vae_scale_factor | |
| latents = latents.view(batch_size, height, width, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) | |
| return latents | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| subject_image, | |
| condition_image, | |
| latents=None, | |
| cond_number=1, | |
| sub_number=1 | |
| ): | |
| height_cond = 2 * (self.cond_size // self.vae_scale_factor) | |
| width_cond = 2 * (self.cond_size // self.vae_scale_factor) | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) # 1 16 106 80 | |
| noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width) | |
| noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding( | |
| batch_size, | |
| height, | |
| width, | |
| height_cond, | |
| width_cond, | |
| device, | |
| dtype, | |
| ) | |
| latents_to_concat = [] | |
| latents_ids_to_concat = [noise_latent_image_ids] | |
| # subject | |
| if subject_image is not None: | |
| shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond) | |
| subject_image = subject_image.to(device=device, dtype=dtype) | |
| subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator) | |
| subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond) | |
| mask2 = torch.zeros(shape_subject, device=device, dtype=dtype) | |
| mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond) | |
| latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype) | |
| latent_subject_ids[:, 1] += 64 # fixed offset | |
| subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2) | |
| latents_to_concat.append(subject_latents) | |
| latents_ids_to_concat.append(subject_latent_image_ids) | |
| # spatial | |
| if condition_image is not None: | |
| shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond) | |
| condition_image = condition_image.to(device=device, dtype=dtype) | |
| image_latents = self._encode_vae_image(image=condition_image, generator=generator) | |
| cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond) | |
| mask3 = torch.zeros(shape_cond, device=device, dtype=dtype) | |
| mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond) | |
| cond_latent_image_ids = cond_latent_image_ids | |
| cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2) | |
| latents_ids_to_concat.append(cond_latent_image_ids) | |
| latents_to_concat.append(cond_latents) | |
| cond_latents = torch.concat(latents_to_concat, dim=-2) | |
| latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2) | |
| return cond_latents, latent_image_ids, noise_latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| spatial_images=None, | |
| subject_images=None, | |
| cond_size=512, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| self.cond_size = cond_size | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| cond_number = len(spatial_images) | |
| sub_number = len(subject_images) | |
| if sub_number > 0: | |
| subject_image_ls = [] | |
| for subject_image in subject_images: | |
| w, h = subject_image.size[:2] | |
| scale = self.cond_size / max(h, w) | |
| new_h, new_w = int(h * scale), int(w * scale) | |
| subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w) | |
| subject_image = subject_image.to(dtype=torch.float32) | |
| pad_h = cond_size - subject_image.shape[-2] | |
| pad_w = cond_size - subject_image.shape[-1] | |
| subject_image = pad( | |
| subject_image, | |
| padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)), | |
| fill=0 | |
| ) | |
| subject_image_ls.append(subject_image) | |
| subject_image = torch.concat(subject_image_ls, dim=-2) | |
| else: | |
| subject_image = None | |
| if cond_number > 0: | |
| condition_image_ls = [] | |
| for img in spatial_images: | |
| condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size) | |
| condition_image = condition_image.to(dtype=torch.float32) | |
| condition_image_ls.append(condition_image) | |
| condition_image = torch.concat(condition_image_ls, dim=-2) | |
| else: | |
| condition_image = None | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 # 16 | |
| cond_latents, latent_image_ids, noise_latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| subject_image, | |
| condition_image, | |
| latents, | |
| cond_number, | |
| sub_number | |
| ) | |
| latents = noise_latents | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| cond_hidden_states=cond_latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| latents = latents | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | 
