EasyControl / src /layers_cache.py
jamesliu1217's picture
Upload 7 files
8f6d6cb verified
raw
history blame
16.9 kB
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
from torch import Tensor
from diffusers.models.attention_processor import Attention
class LoRALinearLayer(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
network_alpha: Optional[float] = None,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
cond_width=512,
cond_height=512,
number=0,
n_loras=1
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
self.cond_height = cond_height
self.cond_width = cond_width
self.number = number
self.n_loras = n_loras
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
####
batch_size = hidden_states.shape[0]
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = hidden_states.shape[1] - cond_size * self.n_loras
shape = (batch_size, hidden_states.shape[1], 3072)
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
mask[:, :block_size+self.number*cond_size, :] = 0
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
hidden_states = mask * hidden_states
####
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class MultiSingleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
super().__init__()
# Initialize a list to store the LoRA layers
self.n_loras = n_loras
self.cond_width = cond_width
self.cond_height = cond_height
self.q_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.k_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.v_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.lora_weights = lora_weights
self.bank_attn = None
self.bank_kv = []
def __call__(self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
use_cond = False
) -> torch.FloatTensor:
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
scaled_seq_len = hidden_states.shape[1]
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = scaled_seq_len - cond_size * self.n_loras
scaled_cond_size = cond_size
scaled_block_size = block_size
if len(self.bank_kv)== 0:
cache = True
else:
cache = False
if cache:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
for i in range(self.n_loras):
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
self.bank_kv.append(key[:, :, scaled_block_size:, :])
self.bank_kv.append(value[:, :, scaled_block_size:, :])
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
num_cond_blocks = self.n_loras
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
mask[ :scaled_block_size, :] = 0 # First block_size row
for i in range(num_cond_blocks):
start = i * scaled_cond_size + scaled_block_size
end = (i + 1) * scaled_cond_size + scaled_block_size
mask[start:end, start:end] = 0 # Diagonal blocks
mask = mask * -1e20
mask = mask.to(query.dtype)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
else:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = query.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query[:, :, :scaled_block_size, :]
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
cond_hidden_states = hidden_states[:, block_size:,:]
hidden_states = hidden_states[:, : block_size,:]
return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
super().__init__()
# Initialize a list to store the LoRA layers
self.n_loras = n_loras
self.cond_width = cond_width
self.cond_height = cond_height
self.q_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.k_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.v_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.proj_loras = nn.ModuleList([
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
for i in range(n_loras)
])
self.lora_weights = lora_weights
self.bank_attn = None
self.bank_kv = []
def __call__(self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
use_cond=False,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
block_size = hidden_states.shape[1] - cond_size * self.n_loras
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
scaled_cond_size = cond_size
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
# `context` projections.
inner_dim = 3072
head_dim = inner_dim // attn.heads
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
if len(self.bank_kv)== 0:
cache = True
else:
cache = False
if cache:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
for i in range(self.n_loras):
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
self.bank_kv.append(key[:, :, block_size:, :])
self.bank_kv.append(value[:, :, block_size:, :])
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
num_cond_blocks = self.n_loras
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
mask[ :scaled_block_size, :] = 0 # First block_size row
for i in range(num_cond_blocks):
start = i * scaled_cond_size + scaled_block_size
end = (i + 1) * scaled_cond_size + scaled_block_size
mask[start:end, start:end] = 0 # Diagonal blocks
mask = mask * -1e20
mask = mask.to(query.dtype)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
else:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = query.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query[:, :, :scaled_block_size, :]
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# Linear projection (with LoRA weight applied to each proj layer)
hidden_states = attn.to_out[0](hidden_states)
for i in range(self.n_loras):
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
cond_hidden_states = hidden_states[:, block_size:,:]
hidden_states = hidden_states[:, :block_size,:]
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)