Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,288 Bytes
8f6d6cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from safetensors import safe_open
import re
import torch
from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
device = "cuda"
def load_safetensors(path):
tensors = {}
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)
return tensors
def get_lora_rank(checkpoint):
for k in checkpoint.keys():
if k.endswith(".down.weight"):
return checkpoint[k].shape[0]
def load_checkpoint(local_path):
if local_path is not None:
if '.safetensors' in local_path:
print(f"Loading .safetensors checkpoint from {local_path}")
checkpoint = load_safetensors(local_path)
else:
print(f"Loading checkpoint from {local_path}")
checkpoint = torch.load(local_path, map_location='cpu')
return checkpoint
def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
number = len(lora_weights)
ranks = [get_lora_rank(checkpoint) for _ in range(number)]
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
# Match based on the layer index in the key (assuming the key contains layer index)
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
)
# Load the weights from the checkpoint dictionary into the corresponding layers
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
lora_attn_procs[name].to(device)
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_state_dicts = {}
for key, value in checkpoint.items():
# Match based on the layer index in the key (assuming the key contains layer index)
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
lora_state_dicts[key] = value
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
)
# Load the weights from the checkpoint dictionary into the corresponding layers
for n in range(number):
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].to(device)
else:
lora_attn_procs[name] = FluxAttnProcessor2_0()
transformer.set_attn_processor(lora_attn_procs)
def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
ck_number = len(checkpoints)
cond_lora_number = [len(ls) for ls in lora_weights]
cond_number = sum(cond_lora_number)
ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
multi_lora_weight = []
for ls in lora_weights:
for n in ls:
multi_lora_weight.append(n)
lora_attn_procs = {}
double_blocks_idx = list(range(19))
single_blocks_idx = list(range(38))
for name, attn_processor in transformer.attn_processors.items():
match = re.search(r'\.(\d+)\.', name)
if match:
layer_index = int(match.group(1))
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
lora_state_dicts = [{} for _ in range(ck_number)]
for idx, checkpoint in enumerate(checkpoints):
for key, value in checkpoint.items():
# Match based on the layer index in the key (assuming the key contains layer index)
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
lora_state_dicts[idx][key] = value
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
)
# Load the weights from the checkpoint dictionary into the corresponding layers
num = 0
for idx in range(ck_number):
for n in range(cond_lora_number[idx]):
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
lora_attn_procs[name].to(device)
num += 1
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
lora_state_dicts = [{} for _ in range(ck_number)]
for idx, checkpoint in enumerate(checkpoints):
for key, value in checkpoint.items():
# Match based on the layer index in the key (assuming the key contains layer index)
if re.search(r'\.(\d+)\.', key):
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
lora_state_dicts[idx][key] = value
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
)
# Load the weights from the checkpoint dictionary into the corresponding layers
num = 0
for idx in range(ck_number):
for n in range(cond_lora_number[idx]):
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
lora_attn_procs[name].to(device)
num += 1
else:
lora_attn_procs[name] = FluxAttnProcessor2_0()
transformer.set_attn_processor(lora_attn_procs)
def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
checkpoint = load_checkpoint(local_path)
update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
def unset_lora(transformer):
lora_attn_procs = {}
for name, attn_processor in transformer.attn_processors.items():
lora_attn_procs[name] = FluxAttnProcessor2_0()
transformer.set_attn_processor(lora_attn_procs)
'''
unset_lora(pipe.transformer)
lora_path = "./lora.safetensors"
lora_weights = [1, 1]
set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
''' |