File size: 16,945 Bytes
8f6d6cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
from torch import Tensor
from diffusers.models.attention_processor import Attention
    
class LoRALinearLayer(nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        network_alpha: Optional[float] = None,
        device: Optional[Union[torch.device, str]] = None,
        dtype: Optional[torch.dtype] = None,
        cond_width=512,
        cond_height=512,
        number=0,
        n_loras=1
    ):
        super().__init__()
        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)
        
        self.cond_height = cond_height
        self.cond_width = cond_width
        self.number = number
        self.n_loras = n_loras

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        ####
        batch_size = hidden_states.shape[0]
        cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
        block_size =  hidden_states.shape[1] - cond_size * self.n_loras
        shape = (batch_size, hidden_states.shape[1], 3072)
        mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) 
        mask[:, :block_size+self.number*cond_size, :] = 0
        mask[:, block_size+(self.number+1)*cond_size:, :] = 0
        hidden_states = mask * hidden_states
        ####
        
        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)
    

class MultiSingleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
        super().__init__()
        # Initialize a list to store the LoRA layers
        self.n_loras = n_loras
        self.cond_width = cond_width
        self.cond_height = cond_height
        
        self.q_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.k_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.v_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.lora_weights = lora_weights
        self.bank_attn = None
        self.bank_kv = []
        

    def __call__(self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        use_cond = False
    ) -> torch.FloatTensor:

        batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        scaled_seq_len = hidden_states.shape[1]
        cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
        block_size =  scaled_seq_len - cond_size * self.n_loras
        scaled_cond_size = cond_size
        scaled_block_size = block_size

        if len(self.bank_kv)== 0:
            cache = True
        else:
            cache = False
        
        if cache:
            query = attn.to_q(hidden_states) 
            key = attn.to_k(hidden_states) 
            value = attn.to_v(hidden_states) 
            for i in range(self.n_loras):
                query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
                key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
                value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)

            inner_dim = key.shape[-1]
            head_dim = inner_dim // attn.heads
            
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            self.bank_kv.append(key[:, :, scaled_block_size:, :])
            self.bank_kv.append(value[:, :, scaled_block_size:, :])
            
            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)
        
            num_cond_blocks = self.n_loras
            mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
            mask[ :scaled_block_size, :] = 0  # First block_size row
            for i in range(num_cond_blocks):
                start = i * scaled_cond_size + scaled_block_size
                end = (i + 1) * scaled_cond_size + scaled_block_size
                mask[start:end, start:end] = 0  # Diagonal blocks
            mask = mask * -1e20
            mask = mask.to(query.dtype)

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
            self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
            
        else:
            query = attn.to_q(hidden_states) 
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)

            inner_dim = query.shape[-1]
            head_dim = inner_dim // attn.heads
            
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
            value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)

            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)
            
            query = query[:, :, :scaled_block_size, :]

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
            hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
            
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        cond_hidden_states = hidden_states[:, block_size:,:]
        hidden_states = hidden_states[:, : block_size,:]

        return hidden_states if not use_cond else (hidden_states, cond_hidden_states)


class MultiDoubleStreamBlockLoraProcessor(nn.Module):
    def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
        super().__init__()
        
        # Initialize a list to store the LoRA layers
        self.n_loras = n_loras
        self.cond_width = cond_width
        self.cond_height = cond_height
        self.q_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.k_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.v_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.proj_loras = nn.ModuleList([
            LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
            for i in range(n_loras)
        ])
        self.lora_weights = lora_weights
        self.bank_attn = None
        self.bank_kv = []


    def __call__(self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        use_cond=False,
    ) -> torch.FloatTensor:
        
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 
        block_size =  hidden_states.shape[1] - cond_size * self.n_loras
        scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
        scaled_cond_size = cond_size
        scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras

        # `context` projections.
        inner_dim = 3072
        head_dim = inner_dim // attn.heads
        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) 
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)

        if attn.norm_added_q is not None:
            encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
        if attn.norm_added_k is not None:
            encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
        
        if len(self.bank_kv)== 0:
            cache = True
        else:
            cache = False
        
        if cache:
            
            query = attn.to_q(hidden_states) 
            key = attn.to_k(hidden_states) 
            value = attn.to_v(hidden_states) 
            for i in range(self.n_loras):
                query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
                key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
                value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)

            inner_dim = key.shape[-1]
            head_dim = inner_dim // attn.heads
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            
            self.bank_kv.append(key[:, :, block_size:, :])
            self.bank_kv.append(value[:, :, block_size:, :])

            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)
            
            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)
            
            num_cond_blocks = self.n_loras
            mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
            mask[ :scaled_block_size, :] = 0  # First block_size row
            for i in range(num_cond_blocks):
                start = i * scaled_cond_size + scaled_block_size
                end = (i + 1) * scaled_cond_size + scaled_block_size
                mask[start:end, start:end] = 0  # Diagonal blocks
            mask = mask * -1e20
            mask = mask.to(query.dtype)

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
            self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
        
        else:
            query = attn.to_q(hidden_states) 
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
    
            inner_dim = query.shape[-1]
            head_dim = inner_dim // attn.heads
            
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
            value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
            
            if attn.norm_q is not None:
                query = attn.norm_q(query)
            if attn.norm_k is not None:
                key = attn.norm_k(key)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

            if image_rotary_emb is not None:
                from diffusers.models.embeddings import apply_rotary_emb
                query = apply_rotary_emb(query, image_rotary_emb)
                key = apply_rotary_emb(key, image_rotary_emb)
            
            query = query[:, :, :scaled_block_size, :]

            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
            hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
            
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        
        encoder_hidden_states, hidden_states = (
            hidden_states[:, : encoder_hidden_states.shape[1]],
            hidden_states[:, encoder_hidden_states.shape[1] :],
        )

        # Linear projection (with LoRA weight applied to each proj layer)
        hidden_states = attn.to_out[0](hidden_states)
        for i in range(self.n_loras):
             hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
        
        cond_hidden_states = hidden_states[:, block_size:,:]
        hidden_states = hidden_states[:, :block_size,:]
        
        return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)