# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import tarfile from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from tarfile import TarFile from zipfile import ZipFile import torch from mmengine.utils.path import mkdir_or_exist def parse_args(): parser = argparse.ArgumentParser( description='Download datasets for training') parser.add_argument( '--dataset-name', type=str, help='dataset name', default='coco2017') parser.add_argument( '--save-dir', type=str, help='the dir to save dataset', default='data/coco') parser.add_argument( '--unzip', action='store_true', help='whether unzip dataset or not, zipped files will be saved') parser.add_argument( '--delete', action='store_true', help='delete the download zipped files') parser.add_argument( '--threads', type=int, help='number of threading', default=4) args = parser.parse_args() return args def download(url, dir, unzip=True, delete=False, threads=1): def download_one(url, dir): f = dir / Path(url).name if Path(url).is_file(): Path(url).rename(f) elif not f.exists(): print(f'Downloading {url} to {f}') torch.hub.download_url_to_file(url, f, progress=True) if unzip and f.suffix in ('.zip', '.tar'): print(f'Unzipping {f.name}') if f.suffix == '.zip': ZipFile(f).extractall(path=dir) elif f.suffix == '.tar': TarFile(f).extractall(path=dir) if delete: f.unlink() print(f'Delete {f}') dir = Path(dir) if threads > 1: pool = ThreadPool(threads) pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) pool.close() pool.join() else: for u in [url] if isinstance(url, (str, Path)) else url: download_one(u, dir) def download_objects365v2(url, dir, unzip=True, delete=False, threads=1): def download_single(url, dir): if 'train' in url: saving_dir = dir / Path('train_zip') mkdir_or_exist(saving_dir) f = saving_dir / Path(url).name unzip_dir = dir / Path('train') mkdir_or_exist(unzip_dir) elif 'val' in url: saving_dir = dir / Path('val') mkdir_or_exist(saving_dir) f = saving_dir / Path(url).name unzip_dir = dir / Path('val') mkdir_or_exist(unzip_dir) else: raise NotImplementedError if Path(url).is_file(): Path(url).rename(f) elif not f.exists(): print(f'Downloading {url} to {f}') torch.hub.download_url_to_file(url, f, progress=True) if unzip and str(f).endswith('.tar.gz'): print(f'Unzipping {f.name}') tar = tarfile.open(f) tar.extractall(path=unzip_dir) if delete: f.unlink() print(f'Delete {f}') # process annotations full_url = [] for _url in url: if 'zhiyuan_objv2_train.tar.gz' in _url or \ 'zhiyuan_objv2_val.json' in _url: full_url.append(_url) elif 'train' in _url: for i in range(51): full_url.append(f'{_url}patch{i}.tar.gz') elif 'val/images/v1' in _url: for i in range(16): full_url.append(f'{_url}patch{i}.tar.gz') elif 'val/images/v2' in _url: for i in range(16, 44): full_url.append(f'{_url}patch{i}.tar.gz') else: raise NotImplementedError dir = Path(dir) if threads > 1: pool = ThreadPool(threads) pool.imap(lambda x: download_single(*x), zip(full_url, repeat(dir))) pool.close() pool.join() else: for u in full_url: download_single(u, dir) def main(): args = parse_args() path = Path(args.save_dir) if not path.exists(): path.mkdir(parents=True, exist_ok=True) data2url = dict( # TODO: Support for downloading Panoptic Segmentation of COCO coco2017=[ 'http://images.cocodataset.org/zips/train2017.zip', 'http://images.cocodataset.org/zips/val2017.zip', 'http://images.cocodataset.org/zips/test2017.zip', 'http://images.cocodataset.org/zips/unlabeled2017.zip', 'http://images.cocodataset.org/annotations/annotations_trainval2017.zip', # noqa 'http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip', # noqa 'http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip', # noqa 'http://images.cocodataset.org/annotations/image_info_test2017.zip', # noqa 'http://images.cocodataset.org/annotations/image_info_unlabeled2017.zip', # noqa ], coco2014=[ 'http://images.cocodataset.org/zips/train2014.zip', 'http://images.cocodataset.org/zips/val2014.zip', 'http://images.cocodataset.org/zips/test2014.zip', 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip', # noqa 'http://images.cocodataset.org/annotations/image_info_test2014.zip' # noqa ], lvis=[ 'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa 'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa ], voc2007=[ 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', # noqa 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', # noqa 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar', # noqa ], voc2012=[ 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', # noqa ], balloon=[ # src link: https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip # noqa 'https://download.openmmlab.com/mmyolo/data/balloon_dataset.zip' ], # Note: There is no download link for Objects365-V1 right now. If you # would like to download Objects365-V1, please visit # http://www.objects365.org/ to concat the author. objects365v2=[ # training annotations 'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/zhiyuan_objv2_train.tar.gz', # noqa # validation annotations 'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/zhiyuan_objv2_val.json', # noqa # training url root 'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/', # noqa # validation url root_1 'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v1/', # noqa # validation url root_2 'https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/val/images/v2/' # noqa ], ade20k_2016=[ # training images and semantic segmentation annotations 'http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip', # noqa # instance segmentation annotations 'http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar', # noqa # img categories ids 'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/imgCatIds.json', # noqa # category mapping 'https://raw.githubusercontent.com/CSAILVision/placeschallenge/master/instancesegmentation/categoryMapping.txt' # noqa ], refcoco=[ # images 'http://images.cocodataset.org/zips/train2014.zip', # refcoco annotations 'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip', # refcoco+ annotations 'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip', # refcocog annotations 'https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip' ]) url = data2url.get(args.dataset_name, None) if url is None: print('Only support ADE20K, COCO, RefCOCO, VOC, LVIS, ' 'balloon, and Objects365v2 now!') return if args.dataset_name == 'objects365v2': download_objects365v2( url, dir=path, unzip=args.unzip, delete=args.delete, threads=args.threads) else: download( url, dir=path, unzip=args.unzip, delete=args.delete, threads=args.threads) if __name__ == '__main__': main()