# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os from mmengine import MMLogger from mmengine.config import Config, DictAction from mmengine.dist import init_dist from mmengine.registry import init_default_scope from mmengine.utils import mkdir_or_exist from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark, InferenceBenchmark) def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark') parser.add_argument('config', help='test config file path') parser.add_argument('--checkpoint', help='checkpoint file') parser.add_argument( '--task', choices=['inference', 'dataloader', 'dataset'], default='dataloader', help='Which task do you want to go to benchmark') parser.add_argument( '--repeat-num', type=int, default=1, help='number of repeat times of measurement for averaging the results') parser.add_argument( '--max-iter', type=int, default=2000, help='num of max iter') parser.add_argument( '--log-interval', type=int, default=50, help='interval of logging') parser.add_argument( '--num-warmup', type=int, default=5, help='Number of warmup') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--dataset-type', choices=['train', 'val', 'test'], default='test', help='Benchmark dataset type. only supports train, val and test') parser.add_argument( '--work-dir', help='the directory to save the file containing ' 'benchmark metrics') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def inference_benchmark(args, cfg, distributed, logger): benchmark = InferenceBenchmark( cfg, args.checkpoint, distributed, args.fuse_conv_bn, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataloader_benchmark(args, cfg, distributed, logger): benchmark = DataLoaderBenchmark( cfg, distributed, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataset_benchmark(args, cfg, distributed, logger): benchmark = DatasetBenchmark( cfg, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) init_default_scope(cfg.get('default_scope', 'mmdet')) distributed = False if args.launcher != 'none': init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {})) distributed = True log_file = None if args.work_dir: log_file = os.path.join(args.work_dir, 'benchmark.log') mkdir_or_exist(args.work_dir) logger = MMLogger.get_instance( 'mmdet', log_file=log_file, log_level='INFO') benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger) benchmark.run(args.repeat_num) if __name__ == '__main__': main()