# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/box_intersection_2d.py # noqa # Adapted from https://github.com/lilanxiao/Rotated_IoU/blob/master/oriented_iou_loss.py # noqa from typing import Tuple import torch from torch import Tensor from torch.autograd import Function from ..utils import ext_loader EPSILON = 1e-8 ext_module = ext_loader.load_ext('_ext', ['diff_iou_rotated_sort_vertices_forward']) class SortVertices(Function): @staticmethod def forward(ctx, vertices, mask, num_valid): idx = ext_module.diff_iou_rotated_sort_vertices_forward( vertices, mask, num_valid) if torch.__version__ != 'parrots': ctx.mark_non_differentiable(idx) return idx @staticmethod def backward(ctx, gradout): return () def box_intersection(corners1: Tensor, corners2: Tensor) -> Tuple[Tensor, Tensor]: """Find intersection points of rectangles. Convention: if two edges are collinear, there is no intersection point. Args: corners1 (Tensor): (B, N, 4, 2) First batch of boxes. corners2 (Tensor): (B, N, 4, 2) Second batch of boxes. Returns: Tuple: - Tensor: (B, N, 4, 4, 2) Intersections. - Tensor: (B, N, 4, 4) Valid intersections mask. """ # build edges from corners # B, N, 4, 4: Batch, Box, edge, point line1 = torch.cat([corners1, corners1[:, :, [1, 2, 3, 0], :]], dim=3) line2 = torch.cat([corners2, corners2[:, :, [1, 2, 3, 0], :]], dim=3) # duplicate data to pair each edges from the boxes # (B, N, 4, 4) -> (B, N, 4, 4, 4) : Batch, Box, edge1, edge2, point line1_ext = line1.unsqueeze(3) line2_ext = line2.unsqueeze(2) x1, y1, x2, y2 = line1_ext.split([1, 1, 1, 1], dim=-1) x3, y3, x4, y4 = line2_ext.split([1, 1, 1, 1], dim=-1) # math: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection numerator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) denumerator_t = (x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4) t = denumerator_t / numerator t[numerator == .0] = -1. mask_t = (t > 0) & (t < 1) # intersection on line segment 1 denumerator_u = (x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3) u = -denumerator_u / numerator u[numerator == .0] = -1. mask_u = (u > 0) & (u < 1) # intersection on line segment 2 mask = mask_t * mask_u # overwrite with EPSILON. otherwise numerically unstable t = denumerator_t / (numerator + EPSILON) intersections = torch.stack([x1 + t * (x2 - x1), y1 + t * (y2 - y1)], dim=-1) intersections = intersections * mask.float().unsqueeze(-1) return intersections, mask def box1_in_box2(corners1: Tensor, corners2: Tensor) -> Tensor: """Check if corners of box1 lie in box2. Convention: if a corner is exactly on the edge of the other box, it's also a valid point. Args: corners1 (Tensor): (B, N, 4, 2) First batch of boxes. corners2 (Tensor): (B, N, 4, 2) Second batch of boxes. Returns: Tensor: (B, N, 4) Intersection. """ # a, b, c, d - 4 vertices of box2 a = corners2[:, :, 0:1, :] # (B, N, 1, 2) b = corners2[:, :, 1:2, :] # (B, N, 1, 2) d = corners2[:, :, 3:4, :] # (B, N, 1, 2) # ab, am, ad - vectors between corresponding vertices ab = b - a # (B, N, 1, 2) am = corners1 - a # (B, N, 4, 2) ad = d - a # (B, N, 1, 2) prod_ab = torch.sum(ab * am, dim=-1) # (B, N, 4) norm_ab = torch.sum(ab * ab, dim=-1) # (B, N, 1) prod_ad = torch.sum(ad * am, dim=-1) # (B, N, 4) norm_ad = torch.sum(ad * ad, dim=-1) # (B, N, 1) # NOTE: the expression looks ugly but is stable if the two boxes # are exactly the same also stable with different scale of bboxes cond1 = (prod_ab / norm_ab > -1e-6) * (prod_ab / norm_ab < 1 + 1e-6 ) # (B, N, 4) cond2 = (prod_ad / norm_ad > -1e-6) * (prod_ad / norm_ad < 1 + 1e-6 ) # (B, N, 4) return cond1 * cond2 def box_in_box(corners1: Tensor, corners2: Tensor) -> Tuple[Tensor, Tensor]: """Check if corners of two boxes lie in each other. Args: corners1 (Tensor): (B, N, 4, 2) First batch of boxes. corners2 (Tensor): (B, N, 4, 2) Second batch of boxes. Returns: Tuple: - Tensor: (B, N, 4) True if i-th corner of box1 is in box2. - Tensor: (B, N, 4) True if i-th corner of box2 is in box1. """ c1_in_2 = box1_in_box2(corners1, corners2) c2_in_1 = box1_in_box2(corners2, corners1) return c1_in_2, c2_in_1 def build_vertices(corners1: Tensor, corners2: Tensor, c1_in_2: Tensor, c2_in_1: Tensor, intersections: Tensor, valid_mask: Tensor) -> Tuple[Tensor, Tensor]: """Find vertices of intersection area. Args: corners1 (Tensor): (B, N, 4, 2) First batch of boxes. corners2 (Tensor): (B, N, 4, 2) Second batch of boxes. c1_in_2 (Tensor): (B, N, 4) True if i-th corner of box1 is in box2. c2_in_1 (Tensor): (B, N, 4) True if i-th corner of box2 is in box1. intersections (Tensor): (B, N, 4, 4, 2) Intersections. valid_mask (Tensor): (B, N, 4, 4) Valid intersections mask. Returns: Tuple: - Tensor: (B, N, 24, 2) Vertices of intersection area; only some elements are valid. - Tensor: (B, N, 24) Mask of valid elements in vertices. """ # NOTE: inter has elements equals zero and has zeros gradient # (masked by multiplying with 0); can be used as trick B = corners1.size()[0] N = corners1.size()[1] # (B, N, 4 + 4 + 16, 2) vertices = torch.cat( [corners1, corners2, intersections.view([B, N, -1, 2])], dim=2) # Bool (B, N, 4 + 4 + 16) mask = torch.cat([c1_in_2, c2_in_1, valid_mask.view([B, N, -1])], dim=2) return vertices, mask def sort_indices(vertices: Tensor, mask: Tensor) -> Tensor: """Sort indices. Note: why 9? the polygon has maximal 8 vertices. +1 to duplicate the first element. the index should have following structure: (A, B, C, ... , A, X, X, X) and X indicates the index of arbitrary elements in the last 16 (intersections not corners) with value 0 and mask False. (cause they have zero value and zero gradient) Args: vertices (Tensor): (B, N, 24, 2) Box vertices. mask (Tensor): (B, N, 24) Mask. Returns: Tensor: (B, N, 9) Sorted indices. """ num_valid = torch.sum(mask.int(), dim=2).int() # (B, N) mean = torch.sum( vertices * mask.float().unsqueeze(-1), dim=2, keepdim=True) / num_valid.unsqueeze(-1).unsqueeze(-1) vertices_normalized = vertices - mean # normalization makes sorting easier return SortVertices.apply(vertices_normalized, mask, num_valid).long() def calculate_area(idx_sorted: Tensor, vertices: Tensor) -> Tuple[Tensor, Tensor]: """Calculate area of intersection. Args: idx_sorted (Tensor): (B, N, 9) Sorted vertex ids. vertices (Tensor): (B, N, 24, 2) Vertices. Returns: Tuple: - Tensor (B, N): Area of intersection. - Tensor: (B, N, 9, 2) Vertices of polygon with zero padding. """ idx_ext = idx_sorted.unsqueeze(-1).repeat([1, 1, 1, 2]) selected = torch.gather(vertices, 2, idx_ext) total = selected[:, :, 0:-1, 0] * selected[:, :, 1:, 1] \ - selected[:, :, 0:-1, 1] * selected[:, :, 1:, 0] total = torch.sum(total, dim=2) area = torch.abs(total) / 2 return area, selected def oriented_box_intersection_2d(corners1: Tensor, corners2: Tensor) -> Tuple[Tensor, Tensor]: """Calculate intersection area of 2d rotated boxes. Args: corners1 (Tensor): (B, N, 4, 2) First batch of boxes. corners2 (Tensor): (B, N, 4, 2) Second batch of boxes. Returns: Tuple: - Tensor (B, N): Area of intersection. - Tensor (B, N, 9, 2): Vertices of polygon with zero padding. """ intersections, valid_mask = box_intersection(corners1, corners2) c12, c21 = box_in_box(corners1, corners2) vertices, mask = build_vertices(corners1, corners2, c12, c21, intersections, valid_mask) sorted_indices = sort_indices(vertices, mask) return calculate_area(sorted_indices, vertices) def box2corners(box: Tensor) -> Tensor: """Convert rotated 2d box coordinate to corners. Args: box (Tensor): (B, N, 5) with x, y, w, h, alpha. Returns: Tensor: (B, N, 4, 2) Corners. """ B = box.size()[0] x, y, w, h, alpha = box.split([1, 1, 1, 1, 1], dim=-1) x4 = box.new_tensor([0.5, -0.5, -0.5, 0.5]).to(box.device) x4 = x4 * w # (B, N, 4) y4 = box.new_tensor([0.5, 0.5, -0.5, -0.5]).to(box.device) y4 = y4 * h # (B, N, 4) corners = torch.stack([x4, y4], dim=-1) # (B, N, 4, 2) sin = torch.sin(alpha) cos = torch.cos(alpha) row1 = torch.cat([cos, sin], dim=-1) row2 = torch.cat([-sin, cos], dim=-1) # (B, N, 2) rot_T = torch.stack([row1, row2], dim=-2) # (B, N, 2, 2) rotated = torch.bmm(corners.view([-1, 4, 2]), rot_T.view([-1, 2, 2])) rotated = rotated.view([B, -1, 4, 2]) # (B * N, 4, 2) -> (B, N, 4, 2) rotated[..., 0] += x rotated[..., 1] += y return rotated def diff_iou_rotated_2d(box1: Tensor, box2: Tensor) -> Tensor: """Calculate differentiable iou of rotated 2d boxes. Args: box1 (Tensor): (B, N, 5) First box. box2 (Tensor): (B, N, 5) Second box. Returns: Tensor: (B, N) IoU. """ corners1 = box2corners(box1) corners2 = box2corners(box2) intersection, _ = oriented_box_intersection_2d(corners1, corners2) # (B, N) area1 = box1[:, :, 2] * box1[:, :, 3] area2 = box2[:, :, 2] * box2[:, :, 3] union = area1 + area2 - intersection iou = intersection / union return iou def diff_iou_rotated_3d(box3d1: Tensor, box3d2: Tensor) -> Tensor: """Calculate differentiable iou of rotated 3d boxes. Args: box3d1 (Tensor): (B, N, 3+3+1) First box (x,y,z,w,h,l,alpha). box3d2 (Tensor): (B, N, 3+3+1) Second box (x,y,z,w,h,l,alpha). Returns: Tensor: (B, N) IoU. """ box1 = box3d1[..., [0, 1, 3, 4, 6]] # 2d box box2 = box3d2[..., [0, 1, 3, 4, 6]] corners1 = box2corners(box1) corners2 = box2corners(box2) intersection, _ = oriented_box_intersection_2d(corners1, corners2) zmax1 = box3d1[..., 2] + box3d1[..., 5] * 0.5 zmin1 = box3d1[..., 2] - box3d1[..., 5] * 0.5 zmax2 = box3d2[..., 2] + box3d2[..., 5] * 0.5 zmin2 = box3d2[..., 2] - box3d2[..., 5] * 0.5 z_overlap = (torch.min(zmax1, zmax2) - torch.max(zmin1, zmin2)).clamp_(min=0.) intersection_3d = intersection * z_overlap volume1 = box3d1[..., 3] * box3d1[..., 4] * box3d1[..., 5] volume2 = box3d2[..., 3] * box3d2[..., 4] * box3d2[..., 5] union_3d = volume1 + volume2 - intersection_3d return intersection_3d / union_3d