# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """This file holding some environment constant for sharing by other files.""" import os.path as osp import subprocess import sys from collections import OrderedDict, defaultdict import cv2 import numpy as np import torch import mmengine from .parrots_wrapper import TORCH_VERSION, get_build_config, is_rocm_pytorch def _get_cuda_home(): if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import CUDA_HOME else: if is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME CUDA_HOME = ROCM_HOME else: from torch.utils.cpp_extension import CUDA_HOME return CUDA_HOME def collect_env(): """Collect the information of the running environments. Returns: dict: The environment information. The following fields are contained. - sys.platform: The variable of ``sys.platform``. - Python: Python version. - CUDA available: Bool, indicating if CUDA is available. - GPU devices: Device type of each GPU. - CUDA_HOME (optional): The env var ``CUDA_HOME``. - NVCC (optional): NVCC version. - GCC: GCC version, "n/a" if GCC is not installed. - MSVC: Microsoft Virtual C++ Compiler version, Windows only. - PyTorch: PyTorch version. - PyTorch compiling details: The output of \ ``torch.__config__.show()``. - TorchVision (optional): TorchVision version. - OpenCV (optional): OpenCV version. - MMENGINE: MMENGINE version. """ from distutils import errors env_info = OrderedDict() env_info['sys.platform'] = sys.platform env_info['Python'] = sys.version.replace('\n', '') cuda_available = torch.cuda.is_available() env_info['CUDA available'] = cuda_available env_info['numpy_random_seed'] = np.random.get_state()[1][0] if cuda_available: devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, device_ids in devices.items(): env_info['GPU ' + ','.join(device_ids)] = name CUDA_HOME = _get_cuda_home() env_info['CUDA_HOME'] = CUDA_HOME if CUDA_HOME is not None and osp.isdir(CUDA_HOME): if CUDA_HOME == '/opt/rocm': try: nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc') nvcc = subprocess.check_output( f'"{nvcc}" --version', shell=True) nvcc = nvcc.decode('utf-8').strip() release = nvcc.rfind('HIP version:') build = nvcc.rfind('') nvcc = nvcc[release:build].strip() except subprocess.SubprocessError: nvcc = 'Not Available' else: try: nvcc = osp.join(CUDA_HOME, 'bin/nvcc') nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True) nvcc = nvcc.decode('utf-8').strip() release = nvcc.rfind('Cuda compilation tools') build = nvcc.rfind('Build ') nvcc = nvcc[release:build].strip() except subprocess.SubprocessError: nvcc = 'Not Available' env_info['NVCC'] = nvcc try: # Check C++ Compiler. # For Unix-like, sysconfig has 'CC' variable like 'gcc -pthread ...', # indicating the compiler used, we use this to get the compiler name import io import sysconfig cc = sysconfig.get_config_var('CC') if cc: cc = osp.basename(cc.split()[0]) cc_info = subprocess.check_output(f'{cc} --version', shell=True) env_info['GCC'] = cc_info.decode('utf-8').partition( '\n')[0].strip() else: # on Windows, cl.exe is not in PATH. We need to find the path. # distutils.ccompiler.new_compiler() returns a msvccompiler # object and after initialization, path to cl.exe is found. import locale import os from distutils.ccompiler import new_compiler ccompiler = new_compiler() ccompiler.initialize() cc = subprocess.check_output( f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True) encoding = os.device_encoding( sys.stdout.fileno()) or locale.getpreferredencoding() env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip() env_info['GCC'] = 'n/a' except (subprocess.CalledProcessError, errors.DistutilsPlatformError): env_info['GCC'] = 'n/a' except io.UnsupportedOperation as e: # JupyterLab on Windows changes sys.stdout, which has no `fileno` attr # Refer to: https://github.com/open-mmlab/mmengine/issues/931 # TODO: find a solution to get compiler info in Windows JupyterLab, # while preserving backward-compatibility in other systems. env_info['MSVC'] = f'n/a, reason: {str(e)}' env_info['PyTorch'] = torch.__version__ env_info['PyTorch compiling details'] = get_build_config() try: import torchvision env_info['TorchVision'] = torchvision.__version__ except ModuleNotFoundError: pass env_info['OpenCV'] = cv2.__version__ env_info['MMEngine'] = mmengine.__version__ return env_info