# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Tuple, Union import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', ['roi_pool_forward', 'roi_pool_backward']) class RoIPoolFunction(Function): @staticmethod def symbolic(g, input, rois, output_size, spatial_scale): return g.op( 'MaxRoiPool', input, rois, pooled_shape_i=output_size, spatial_scale_f=spatial_scale) @staticmethod def forward(ctx: Any, input: torch.Tensor, rois: torch.Tensor, output_size: Union[int, tuple], spatial_scale: float = 1.0) -> torch.Tensor: ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.input_shape = input.size() assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' output_shape = (rois.size(0), input.size(1), ctx.output_size[0], ctx.output_size[1]) output = input.new_zeros(output_shape) argmax = input.new_zeros(output_shape, dtype=torch.int) ext_module.roi_pool_forward( input, rois, output, argmax, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale) ctx.save_for_backward(rois, argmax) return output @staticmethod @once_differentiable def backward( ctx: Any, grad_output: torch.Tensor ) -> Tuple[torch.Tensor, None, None, None]: rois, argmax = ctx.saved_tensors grad_input = grad_output.new_zeros(ctx.input_shape) ext_module.roi_pool_backward( grad_output, rois, argmax, grad_input, pooled_height=ctx.output_size[0], pooled_width=ctx.output_size[1], spatial_scale=ctx.spatial_scale) return grad_input, None, None, None roi_pool = RoIPoolFunction.apply class RoIPool(nn.Module): def __init__(self, output_size: Union[int, tuple], spatial_scale: float = 1.0): super().__init__() self.output_size = _pair(output_size) self.spatial_scale = float(spatial_scale) def forward(self, input: torch.Tensor, rois: torch.Tensor) -> torch.Tensor: return roi_pool(input, rois, self.output_size, self.spatial_scale) def __repr__(self): s = self.__class__.__name__ s += f'(output_size={self.output_size}, ' s += f'spatial_scale={self.spatial_scale})' return s