# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn class Scale(nn.Module): """A learnable scale parameter. This layer scales the input by a learnable factor. It multiplies a learnable scale parameter of shape (1,) with input of any shape. Args: scale (float): Initial value of scale factor. Default: 1.0 """ def __init__(self, scale: float = 1.0): super().__init__() self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float)) def forward(self, x: torch.Tensor) -> torch.Tensor: return x * self.scale class LayerScale(nn.Module): """LayerScale layer. Args: dim (int): Dimension of input features. inplace (bool): Whether performs operation in-place. Default: `False`. data_format (str): The input data format, could be 'channels_last' or 'channels_first', representing (B, C, H, W) and (B, N, C) format data respectively. Default: 'channels_last'. scale (float): Initial value of scale factor. Default: 1.0 """ def __init__(self, dim: int, inplace: bool = False, data_format: str = 'channels_last', scale: float = 1e-5): super().__init__() assert data_format in ('channels_last', 'channels_first'), \ "'data_format' could only be channels_last or channels_first." self.inplace = inplace self.data_format = data_format self.weight = nn.Parameter(torch.ones(dim) * scale) def forward(self, x) -> torch.Tensor: if self.data_format == 'channels_first': shape = tuple((1, -1, *(1 for _ in range(x.dim() - 2)))) else: shape = tuple((*(1 for _ in range(x.dim() - 1)), -1)) if self.inplace: return x.mul_(self.weight.view(*shape)) else: return x * self.weight.view(*shape)