rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import inspect
from typing import List, Union
import torch
import torch.nn as nn
from mmengine.config import Config, ConfigDict
from mmengine.device import is_npu_available, is_npu_support_full_precision
from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS
from .optimizer_wrapper import OptimWrapper
def register_torch_optimizers() -> List[str]:
"""Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
torch_optimizers = []
for module_name in dir(torch.optim):
if module_name.startswith('__'):
continue
_optim = getattr(torch.optim, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
OPTIMIZERS.register_module(module=_optim)
torch_optimizers.append(module_name)
return torch_optimizers
TORCH_OPTIMIZERS = register_torch_optimizers()
def register_torch_npu_optimizers() -> List[str]:
"""Register optimizers in ``torch npu`` to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
if not is_npu_available():
return []
import torch_npu
if not hasattr(torch_npu, 'optim'):
return []
torch_npu_optimizers = []
for module_name in dir(torch_npu.optim):
if module_name.startswith('__') or module_name in OPTIMIZERS:
continue
_optim = getattr(torch_npu.optim, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
OPTIMIZERS.register_module(module=_optim)
torch_npu_optimizers.append(module_name)
return torch_npu_optimizers
NPU_OPTIMIZERS = register_torch_npu_optimizers()
def register_dadaptation_optimizers() -> List[str]:
"""Register optimizers in ``dadaptation`` to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
dadaptation_optimizers = []
try:
import dadaptation
except ImportError:
pass
else:
for module_name in ['DAdaptAdaGrad', 'DAdaptAdam', 'DAdaptSGD']:
_optim = getattr(dadaptation, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
OPTIMIZERS.register_module(module=_optim)
dadaptation_optimizers.append(module_name)
return dadaptation_optimizers
DADAPTATION_OPTIMIZERS = register_dadaptation_optimizers()
def register_lion_optimizers() -> List[str]:
"""Register Lion optimizer to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
optimizers = []
try:
from lion_pytorch import Lion
except ImportError:
pass
else:
OPTIMIZERS.register_module(module=Lion)
optimizers.append('Lion')
return optimizers
LION_OPTIMIZERS = register_lion_optimizers()
def register_sophia_optimizers() -> List[str]:
"""Register Sophia optimizer to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
optimizers = []
try:
import Sophia
except ImportError:
pass
else:
for module_name in dir(Sophia):
_optim = getattr(Sophia, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
OPTIMIZERS.register_module(module=_optim)
optimizers.append(module_name)
return optimizers
SOPHIA_OPTIMIZERS = register_sophia_optimizers()
def register_bitsandbytes_optimizers() -> List[str]:
"""Register optimizers in ``bitsandbytes`` to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
dadaptation_optimizers = []
try:
import bitsandbytes as bnb
except ImportError:
pass
else:
for module_name in [
'AdamW8bit', 'Adam8bit', 'Adagrad8bit', 'PagedAdam8bit',
'PagedAdamW8bit', 'LAMB8bit', 'LARS8bit', 'RMSprop8bit',
'Lion8bit', 'PagedLion8bit', 'SGD8bit'
]:
_optim = getattr(bnb.optim, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
OPTIMIZERS.register_module(module=_optim)
dadaptation_optimizers.append(module_name)
return dadaptation_optimizers
BITSANDBYTES_OPTIMIZERS = register_bitsandbytes_optimizers()
def register_transformers_optimizers():
transformer_optimizers = []
try:
from transformers import Adafactor
except ImportError:
pass
else:
OPTIMIZERS.register_module(name='Adafactor', module=Adafactor)
transformer_optimizers.append('Adafactor')
return transformer_optimizers
TRANSFORMERS_OPTIMIZERS = register_transformers_optimizers()
def build_optim_wrapper(model: nn.Module,
cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper:
"""Build function of OptimWrapper.
If ``constructor`` is set in the ``cfg``, this method will build an
optimizer wrapper constructor, and use optimizer wrapper constructor to
build the optimizer wrapper. If ``constructor`` is not set, the
``DefaultOptimWrapperConstructor`` will be used by default.
Args:
model (nn.Module): Model to be optimized.
cfg (dict): Config of optimizer wrapper, optimizer constructor and
optimizer.
Returns:
OptimWrapper: The built optimizer wrapper.
"""
optim_wrapper_cfg = copy.deepcopy(cfg)
constructor_type = optim_wrapper_cfg.pop('constructor',
'DefaultOptimWrapperConstructor')
paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None)
# Since the current generation of NPU(Ascend 910) only supports
# mixed precision training, here we turn on mixed precision
# to make the training normal
if is_npu_available() and not is_npu_support_full_precision():
optim_wrapper_cfg['type'] = 'AmpOptimWrapper'
optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build(
dict(
type=constructor_type,
optim_wrapper_cfg=optim_wrapper_cfg,
paramwise_cfg=paramwise_cfg))
optim_wrapper = optim_wrapper_constructor(model)
return optim_wrapper