Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import copy | |
import inspect | |
from typing import List, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.config import Config, ConfigDict | |
from mmengine.device import is_npu_available, is_npu_support_full_precision | |
from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS | |
from .optimizer_wrapper import OptimWrapper | |
def register_torch_optimizers() -> List[str]: | |
"""Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
torch_optimizers = [] | |
for module_name in dir(torch.optim): | |
if module_name.startswith('__'): | |
continue | |
_optim = getattr(torch.optim, module_name) | |
if inspect.isclass(_optim) and issubclass(_optim, | |
torch.optim.Optimizer): | |
OPTIMIZERS.register_module(module=_optim) | |
torch_optimizers.append(module_name) | |
return torch_optimizers | |
TORCH_OPTIMIZERS = register_torch_optimizers() | |
def register_torch_npu_optimizers() -> List[str]: | |
"""Register optimizers in ``torch npu`` to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
if not is_npu_available(): | |
return [] | |
import torch_npu | |
if not hasattr(torch_npu, 'optim'): | |
return [] | |
torch_npu_optimizers = [] | |
for module_name in dir(torch_npu.optim): | |
if module_name.startswith('__') or module_name in OPTIMIZERS: | |
continue | |
_optim = getattr(torch_npu.optim, module_name) | |
if inspect.isclass(_optim) and issubclass(_optim, | |
torch.optim.Optimizer): | |
OPTIMIZERS.register_module(module=_optim) | |
torch_npu_optimizers.append(module_name) | |
return torch_npu_optimizers | |
NPU_OPTIMIZERS = register_torch_npu_optimizers() | |
def register_dadaptation_optimizers() -> List[str]: | |
"""Register optimizers in ``dadaptation`` to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
dadaptation_optimizers = [] | |
try: | |
import dadaptation | |
except ImportError: | |
pass | |
else: | |
for module_name in ['DAdaptAdaGrad', 'DAdaptAdam', 'DAdaptSGD']: | |
_optim = getattr(dadaptation, module_name) | |
if inspect.isclass(_optim) and issubclass(_optim, | |
torch.optim.Optimizer): | |
OPTIMIZERS.register_module(module=_optim) | |
dadaptation_optimizers.append(module_name) | |
return dadaptation_optimizers | |
DADAPTATION_OPTIMIZERS = register_dadaptation_optimizers() | |
def register_lion_optimizers() -> List[str]: | |
"""Register Lion optimizer to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
optimizers = [] | |
try: | |
from lion_pytorch import Lion | |
except ImportError: | |
pass | |
else: | |
OPTIMIZERS.register_module(module=Lion) | |
optimizers.append('Lion') | |
return optimizers | |
LION_OPTIMIZERS = register_lion_optimizers() | |
def register_sophia_optimizers() -> List[str]: | |
"""Register Sophia optimizer to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
optimizers = [] | |
try: | |
import Sophia | |
except ImportError: | |
pass | |
else: | |
for module_name in dir(Sophia): | |
_optim = getattr(Sophia, module_name) | |
if inspect.isclass(_optim) and issubclass(_optim, | |
torch.optim.Optimizer): | |
OPTIMIZERS.register_module(module=_optim) | |
optimizers.append(module_name) | |
return optimizers | |
SOPHIA_OPTIMIZERS = register_sophia_optimizers() | |
def register_bitsandbytes_optimizers() -> List[str]: | |
"""Register optimizers in ``bitsandbytes`` to the ``OPTIMIZERS`` registry. | |
Returns: | |
List[str]: A list of registered optimizers' name. | |
""" | |
dadaptation_optimizers = [] | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
pass | |
else: | |
for module_name in [ | |
'AdamW8bit', 'Adam8bit', 'Adagrad8bit', 'PagedAdam8bit', | |
'PagedAdamW8bit', 'LAMB8bit', 'LARS8bit', 'RMSprop8bit', | |
'Lion8bit', 'PagedLion8bit', 'SGD8bit' | |
]: | |
_optim = getattr(bnb.optim, module_name) | |
if inspect.isclass(_optim) and issubclass(_optim, | |
torch.optim.Optimizer): | |
OPTIMIZERS.register_module(module=_optim) | |
dadaptation_optimizers.append(module_name) | |
return dadaptation_optimizers | |
BITSANDBYTES_OPTIMIZERS = register_bitsandbytes_optimizers() | |
def register_transformers_optimizers(): | |
transformer_optimizers = [] | |
try: | |
from transformers import Adafactor | |
except ImportError: | |
pass | |
else: | |
OPTIMIZERS.register_module(name='Adafactor', module=Adafactor) | |
transformer_optimizers.append('Adafactor') | |
return transformer_optimizers | |
TRANSFORMERS_OPTIMIZERS = register_transformers_optimizers() | |
def build_optim_wrapper(model: nn.Module, | |
cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: | |
"""Build function of OptimWrapper. | |
If ``constructor`` is set in the ``cfg``, this method will build an | |
optimizer wrapper constructor, and use optimizer wrapper constructor to | |
build the optimizer wrapper. If ``constructor`` is not set, the | |
``DefaultOptimWrapperConstructor`` will be used by default. | |
Args: | |
model (nn.Module): Model to be optimized. | |
cfg (dict): Config of optimizer wrapper, optimizer constructor and | |
optimizer. | |
Returns: | |
OptimWrapper: The built optimizer wrapper. | |
""" | |
optim_wrapper_cfg = copy.deepcopy(cfg) | |
constructor_type = optim_wrapper_cfg.pop('constructor', | |
'DefaultOptimWrapperConstructor') | |
paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) | |
# Since the current generation of NPU(Ascend 910) only supports | |
# mixed precision training, here we turn on mixed precision | |
# to make the training normal | |
if is_npu_available() and not is_npu_support_full_precision(): | |
optim_wrapper_cfg['type'] = 'AmpOptimWrapper' | |
optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( | |
dict( | |
type=constructor_type, | |
optim_wrapper_cfg=optim_wrapper_cfg, | |
paramwise_cfg=paramwise_cfg)) | |
optim_wrapper = optim_wrapper_constructor(model) | |
return optim_wrapper | |