Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import os | |
import os.path as osp | |
from itertools import product | |
from mmengine.config import Config, DictAction | |
from mmengine.dist import get_dist_info | |
from mmengine.logging import MMLogger, print_log | |
from mmengine.model import is_model_wrapper | |
from mmengine.registry import init_default_scope | |
from mmengine.runner import Runner | |
from mmengine.runner.checkpoint import load_checkpoint | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMDet tracking test (and eval) a model') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('--checkpoint', help='checkpoint file') | |
parser.add_argument('--detector', help='detection checkpoint file') | |
parser.add_argument('--reid', help='reid checkpoint file') | |
parser.add_argument( | |
'--work-dir', | |
help='the directory to save the file containing evaluation metrics') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def get_search_params(cfg, search_params=None, prefix=None, logger=None): | |
if search_params is None: | |
search_params = dict() | |
for k, v in cfg.items(): | |
if prefix is not None: | |
entire_k = prefix + '.' + k | |
else: | |
entire_k = k | |
if isinstance(v, list): | |
print_log(f'search `{entire_k}` in {v}.', logger) | |
search_params[entire_k] = v | |
if isinstance(v, dict): | |
search_params = get_search_params(v, search_params, entire_k, | |
logger) | |
return search_params | |
def main(): | |
args = parse_args() | |
# do not init the default scope here because it will be init in the runner | |
# load config | |
cfg = Config.fromfile(args.config) | |
init_default_scope(cfg.get('default_scope', 'mmdet')) | |
cfg.launcher = args.launcher | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
cfg.load_from = args.checkpoint | |
logger = MMLogger.get_instance(name='ParamsSearcher', logger_name='Logger') | |
# get all cases | |
search_params = get_search_params(cfg.model.tracker, logger=logger) | |
search_params_names = tuple(search_params.keys()) | |
all_search_cases = [] | |
for values in product(*search_params.values()): | |
search = dict() | |
for k, v in zip(search_params_names, values): | |
search[k] = v | |
all_search_cases.append(search) | |
print_log(f'Totally {len(all_search_cases)} cases.', logger) | |
search_metrics = [] | |
metrics_types = [cfg.test_evaluator.metric] if isinstance( | |
cfg.test_evaluator.metric, str) else cfg.test_evaluator.metric | |
if 'HOTA' in metrics_types: | |
search_metrics.extend(['HOTA', 'AssA', 'DetA']) | |
if 'CLEAR' in metrics_types: | |
search_metrics.extend( | |
['MOTA', 'MOTP', 'IDSW', 'TP', 'FN', 'FP', 'Frag', 'MT', 'ML']) | |
if 'Identity' in metrics_types: | |
search_metrics.extend(['IDF1', 'IDTP', 'IDFN', 'IDFP', 'IDP', 'IDR']) | |
print_log(f'Record {search_metrics}.', logger) | |
runner = Runner.from_cfg(cfg) | |
if is_model_wrapper(runner.model): | |
model = runner.model.module | |
else: | |
model = runner.model | |
if args.detector: | |
assert not (args.checkpoint and args.detector), \ | |
'Error: checkpoint and detector checkpoint cannot both exist' | |
load_checkpoint(model.detector, args.detector) | |
if args.reid: | |
assert (args.checkpoint is not None) or (args.detector is not None), \ | |
'Error: checkpoint and detector checkpoint cannot both not exist' | |
assert not (args.checkpoint and args.reid), \ | |
'Error: checkpoint and reid checkpoint cannot both exist' | |
load_checkpoint(model.reid, args.reid) | |
for case in all_search_cases: | |
for name, value in case.items(): | |
if hasattr(runner.model, 'module'): | |
setattr(runner.model.module.tracker, name, value) | |
else: | |
setattr(runner.model.tracker, name, value) | |
runner.test() | |
rank, _ = get_dist_info() | |
if rank == 0: | |
_records = [] | |
for metric in search_metrics: | |
res = runner.message_hub.get_scalar( | |
'test/motchallenge-metric/' + metric).current() | |
if isinstance(res, float): | |
_records.append(f'{res:.3f}') | |
else: | |
_records.append(f'{res}') | |
print_log(f'-------------- {case}: {_records} --------------', | |
logger) | |
if __name__ == '__main__': | |
main() | |