Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import os.path as osp | |
from mmengine.config import Config, DictAction | |
from mmengine.registry import init_default_scope | |
from mmengine.utils import ProgressBar | |
from mmdet.models.utils import mask2ndarray | |
from mmdet.registry import DATASETS, VISUALIZERS | |
from mmdet.structures.bbox import BaseBoxes | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Browse a dataset') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument( | |
'--output-dir', | |
default=None, | |
type=str, | |
help='If there is no display interface, you can save it') | |
parser.add_argument('--not-show', default=False, action='store_true') | |
parser.add_argument( | |
'--show-interval', | |
type=float, | |
default=2, | |
help='the interval of show (s)') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# register all modules in mmdet into the registries | |
init_default_scope(cfg.get('default_scope', 'mmdet')) | |
dataset = DATASETS.build(cfg.train_dataloader.dataset) | |
visualizer = VISUALIZERS.build(cfg.visualizer) | |
visualizer.dataset_meta = dataset.metainfo | |
progress_bar = ProgressBar(len(dataset)) | |
for item in dataset: | |
img = item['inputs'].permute(1, 2, 0).numpy() | |
data_sample = item['data_samples'].numpy() | |
gt_instances = data_sample.gt_instances | |
img_path = osp.basename(item['data_samples'].img_path) | |
out_file = osp.join( | |
args.output_dir, | |
osp.basename(img_path)) if args.output_dir is not None else None | |
img = img[..., [2, 1, 0]] # bgr to rgb | |
gt_bboxes = gt_instances.get('bboxes', None) | |
if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes): | |
gt_instances.bboxes = gt_bboxes.tensor | |
gt_masks = gt_instances.get('masks', None) | |
if gt_masks is not None: | |
masks = mask2ndarray(gt_masks) | |
gt_instances.masks = masks.astype(bool) | |
data_sample.gt_instances = gt_instances | |
visualizer.add_datasample( | |
osp.basename(img_path), | |
img, | |
data_sample, | |
draw_pred=False, | |
show=not args.not_show, | |
wait_time=args.show_interval, | |
out_file=out_file) | |
progress_bar.update() | |
if __name__ == '__main__': | |
main() | |