Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, Optional | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import TrackSampleList | |
from mmdet.utils import OptConfigType, OptMultiConfig | |
from .base import BaseMOTModel | |
class OCSORT(BaseMOTModel): | |
"""OCOSRT: Observation-Centric SORT: Rethinking SORT for Robust | |
Multi-Object Tracking | |
This multi object tracker is the implementation of `OC-SORT | |
<https://arxiv.org/abs/2203.14360>`_. | |
Args: | |
detector (dict): Configuration of detector. Defaults to None. | |
tracker (dict): Configuration of tracker. Defaults to None. | |
motion (dict): Configuration of motion. Defaults to None. | |
init_cfg (dict): Configuration of initialization. Defaults to None. | |
""" | |
def __init__(self, | |
detector: Optional[dict] = None, | |
tracker: Optional[dict] = None, | |
data_preprocessor: OptConfigType = None, | |
init_cfg: OptMultiConfig = None): | |
super().__init__(data_preprocessor, init_cfg) | |
if detector is not None: | |
self.detector = MODELS.build(detector) | |
if tracker is not None: | |
self.tracker = MODELS.build(tracker) | |
def loss(self, inputs: Tensor, data_samples: TrackSampleList, | |
**kwargs) -> dict: | |
"""Calculate losses from a batch of inputs and data samples.""" | |
return self.detector.loss(inputs, data_samples, **kwargs) | |
def predict(self, inputs: Dict[str, Tensor], data_samples: TrackSampleList, | |
**kwargs) -> TrackSampleList: | |
"""Predict results from a video and data samples with post-processing. | |
Args: | |
inputs (Tensor): of shape (N, T, C, H, W) encoding | |
input images. The N denotes batch size. | |
The T denotes the number of frames in a video. | |
data_samples (list[:obj:`TrackDataSample`]): The batch | |
data samples. It usually includes information such | |
as `video_data_samples`. | |
Returns: | |
TrackSampleList: Tracking results of the inputs. | |
""" | |
assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' | |
assert inputs.size(0) == 1, \ | |
'OCSORT inference only support ' \ | |
'1 batch size per gpu for now.' | |
assert len(data_samples) == 1, \ | |
'OCSORT inference only support 1 batch size per gpu for now.' | |
track_data_sample = data_samples[0] | |
video_len = len(track_data_sample) | |
for frame_id in range(video_len): | |
img_data_sample = track_data_sample[frame_id] | |
single_img = inputs[:, frame_id].contiguous() | |
# det_results List[DetDataSample] | |
det_results = self.detector.predict(single_img, [img_data_sample]) | |
assert len(det_results) == 1, 'Batch inference is not supported.' | |
pred_track_instances = self.tracker.track( | |
data_sample=det_results[0], **kwargs) | |
img_data_sample.pred_track_instances = pred_track_instances | |
return [track_data_sample] | |