rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Optional
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList, TrackSampleList
from mmdet.utils import OptConfigType, OptMultiConfig
from .base import BaseMOTModel
@MODELS.register_module()
class ByteTrack(BaseMOTModel):
"""ByteTrack: Multi-Object Tracking by Associating Every Detection Box.
This multi object tracker is the implementation of `ByteTrack
<https://arxiv.org/abs/2110.06864>`_.
Args:
detector (dict): Configuration of detector. Defaults to None.
tracker (dict): Configuration of tracker. Defaults to None.
data_preprocessor (dict or ConfigDict, optional): The pre-process
config of :class:`TrackDataPreprocessor`. it usually includes,
``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``.
init_cfg (dict or list[dict]): Configuration of initialization.
Defaults to None.
"""
def __init__(self,
detector: Optional[dict] = None,
tracker: Optional[dict] = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(data_preprocessor, init_cfg)
if detector is not None:
self.detector = MODELS.build(detector)
if tracker is not None:
self.tracker = MODELS.build(tracker)
def loss(self, inputs: Tensor, data_samples: SampleList, **kwargs) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): of shape (N, C, H, W) encoding
input images. Typically these should be mean centered and std
scaled. The N denotes batch size
data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance`.
Returns:
dict: A dictionary of loss components.
"""
return self.detector.loss(inputs, data_samples, **kwargs)
def predict(self, inputs: Dict[str, Tensor], data_samples: TrackSampleList,
**kwargs) -> TrackSampleList:
"""Predict results from a video and data samples with post-processing.
Args:
inputs (Tensor): of shape (N, T, C, H, W) encoding
input images. The N denotes batch size.
The T denotes the number of frames in a video.
data_samples (list[:obj:`TrackDataSample`]): The batch
data samples. It usually includes information such
as `video_data_samples`.
Returns:
TrackSampleList: Tracking results of the inputs.
"""
assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).'
assert inputs.size(0) == 1, \
'Bytetrack inference only support ' \
'1 batch size per gpu for now.'
assert len(data_samples) == 1, \
'Bytetrack inference only support 1 batch size per gpu for now.'
track_data_sample = data_samples[0]
video_len = len(track_data_sample)
for frame_id in range(video_len):
img_data_sample = track_data_sample[frame_id]
single_img = inputs[:, frame_id].contiguous()
# det_results List[DetDataSample]
det_results = self.detector.predict(single_img, [img_data_sample])
assert len(det_results) == 1, 'Batch inference is not supported.'
pred_track_instances = self.tracker.track(
data_sample=det_results[0], **kwargs)
img_data_sample.pred_track_instances = pred_track_instances
return [track_data_sample]