Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.utils import is_tuple_of | |
from torch.autograd import Function | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['riroi_align_rotated_forward', 'riroi_align_rotated_backward']) | |
class RiRoIAlignRotatedFunction(Function): | |
def forward(ctx: Any, | |
features: torch.Tensor, | |
rois: torch.Tensor, | |
out_size: Union[int, tuple], | |
spatial_scale: float, | |
num_samples: int = 0, | |
num_orientations: int = 8, | |
clockwise: bool = False) -> torch.Tensor: | |
if isinstance(out_size, int): | |
out_h = out_size | |
out_w = out_size | |
elif is_tuple_of(out_size, int): | |
assert len(out_size) == 2 | |
out_h, out_w = out_size | |
else: | |
raise TypeError( | |
f'"out_size" should be an integer or tuple of integers,' | |
f' but got {out_size}') | |
ctx.spatial_scale = spatial_scale | |
ctx.num_samples = num_samples | |
ctx.num_orientations = num_orientations | |
ctx.clockwise = clockwise | |
ctx.save_for_backward(rois) | |
ctx.feature_size = features.size() | |
batch_size, num_channels, _, _ = features.size() | |
num_rois = rois.size(0) | |
output = features.new_zeros(num_rois, num_channels, out_h, out_w) | |
ext_module.riroi_align_rotated_forward( | |
features, | |
rois, | |
output, | |
pooled_height=out_h, | |
pooled_width=out_w, | |
spatial_scale=spatial_scale, | |
num_samples=num_samples, | |
num_orientations=num_orientations, | |
clockwise=clockwise) | |
return output | |
def backward( | |
ctx: Any, grad_output: torch.Tensor | |
) -> Optional[Tuple[torch.Tensor, None, None, None, None, None, None]]: | |
feature_size = ctx.feature_size | |
spatial_scale = ctx.spatial_scale | |
num_orientations = ctx.num_orientations | |
clockwise = ctx.clockwise | |
num_samples = ctx.num_samples | |
rois = ctx.saved_tensors[0] | |
assert feature_size is not None | |
batch_size, num_channels, feature_h, feature_w = feature_size | |
out_w = grad_output.size(3) | |
out_h = grad_output.size(2) | |
grad_input = None | |
if ctx.needs_input_grad[0]: | |
grad_input = rois.new_zeros(batch_size, num_channels, feature_h, | |
feature_w) | |
ext_module.riroi_align_rotated_backward( | |
grad_output.contiguous(), | |
rois, | |
grad_input, | |
pooled_height=out_h, | |
pooled_width=out_w, | |
spatial_scale=spatial_scale, | |
num_samples=num_samples, | |
num_orientations=num_orientations, | |
clockwise=clockwise) | |
return grad_input, None, None, None, None, None, None | |
return None | |
riroi_align_rotated = RiRoIAlignRotatedFunction.apply | |
class RiRoIAlignRotated(nn.Module): | |
"""Rotation-invariant RoI align pooling layer for rotated proposals. | |
It accepts a feature map of shape (N, C, H, W) and rois with shape | |
(n, 6) with each roi decoded as (batch_index, center_x, center_y, | |
w, h, angle). The angle is in radian. | |
The details are described in the paper `ReDet: A Rotation-equivariant | |
Detector for Aerial Object Detection <https://arxiv.org/abs/2103.07733>`_. | |
Args: | |
out_size (tuple): fixed dimensional RoI output with shape (h, w). | |
spatial_scale (float): scale the input boxes by this number | |
num_samples (int): number of inputs samples to take for each | |
output sample. 0 to take samples densely for current models. | |
num_orientations (int): number of oriented channels. | |
clockwise (bool): If True, the angle in each proposal follows a | |
clockwise fashion in image space, otherwise, the angle is | |
counterclockwise. Default: False. | |
""" | |
def __init__(self, | |
out_size: tuple, | |
spatial_scale: float, | |
num_samples: int = 0, | |
num_orientations: int = 8, | |
clockwise: bool = False): | |
super().__init__() | |
self.out_size = out_size | |
self.spatial_scale = float(spatial_scale) | |
self.num_samples = int(num_samples) | |
self.num_orientations = int(num_orientations) | |
self.clockwise = clockwise | |
def forward(self, features: torch.Tensor, | |
rois: torch.Tensor) -> torch.Tensor: | |
return RiRoIAlignRotatedFunction.apply(features, rois, self.out_size, | |
self.spatial_scale, | |
self.num_samples, | |
self.num_orientations, | |
self.clockwise) | |