Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Optional, Tuple | |
from torch import Tensor, nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['deform_roi_pool_forward', 'deform_roi_pool_backward']) | |
class DeformRoIPoolFunction(Function): | |
def symbolic(g, input, rois, offset, output_size, spatial_scale, | |
sampling_ratio, gamma): | |
inputs = [input, rois] | |
if offset is not None: | |
inputs = [input, rois, offset] | |
return g.op( | |
'mmcv::MMCVDeformRoIPool', | |
*inputs, | |
pooled_height_i=output_size[0], | |
pooled_width_i=output_size[1], | |
spatial_scale_f=spatial_scale, | |
sampling_ratio_f=sampling_ratio, | |
gamma_f=gamma, | |
) | |
def forward(ctx, | |
input: Tensor, | |
rois: Tensor, | |
offset: Optional[Tensor], | |
output_size: Tuple[int, ...], | |
spatial_scale: float = 1.0, | |
sampling_ratio: int = 0, | |
gamma: float = 0.1) -> Tensor: | |
if offset is None: | |
offset = input.new_zeros(0) | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = float(spatial_scale) | |
ctx.sampling_ratio = int(sampling_ratio) | |
ctx.gamma = float(gamma) | |
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' | |
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], | |
ctx.output_size[1]) | |
output = input.new_zeros(output_shape) | |
ext_module.deform_roi_pool_forward( | |
input, | |
rois, | |
offset, | |
output, | |
pooled_height=ctx.output_size[0], | |
pooled_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
gamma=ctx.gamma) | |
ctx.save_for_backward(input, rois, offset) | |
return output | |
def backward( | |
ctx, grad_output: Tensor | |
) -> Tuple[Tensor, None, Tensor, None, None, None, None]: | |
input, rois, offset = ctx.saved_tensors | |
grad_input = grad_output.new_zeros(input.shape) | |
grad_offset = grad_output.new_zeros(offset.shape) | |
ext_module.deform_roi_pool_backward( | |
grad_output, | |
input, | |
rois, | |
offset, | |
grad_input, | |
grad_offset, | |
pooled_height=ctx.output_size[0], | |
pooled_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
gamma=ctx.gamma) | |
if grad_offset.numel() == 0: | |
grad_offset = None | |
return grad_input, None, grad_offset, None, None, None, None | |
deform_roi_pool = DeformRoIPoolFunction.apply | |
class DeformRoIPool(nn.Module): | |
def __init__(self, | |
output_size: Tuple[int, ...], | |
spatial_scale: float = 1.0, | |
sampling_ratio: int = 0, | |
gamma: float = 0.1): | |
super().__init__() | |
self.output_size = _pair(output_size) | |
self.spatial_scale = float(spatial_scale) | |
self.sampling_ratio = int(sampling_ratio) | |
self.gamma = float(gamma) | |
def forward(self, | |
input: Tensor, | |
rois: Tensor, | |
offset: Optional[Tensor] = None) -> Tensor: | |
return deform_roi_pool(input, rois, offset, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.gamma) | |
class DeformRoIPoolPack(DeformRoIPool): | |
def __init__(self, | |
output_size: Tuple[int, ...], | |
output_channels: int, | |
deform_fc_channels: int = 1024, | |
spatial_scale: float = 1.0, | |
sampling_ratio: int = 0, | |
gamma: float = 0.1): | |
super().__init__(output_size, spatial_scale, sampling_ratio, gamma) | |
self.output_channels = output_channels | |
self.deform_fc_channels = deform_fc_channels | |
self.offset_fc = nn.Sequential( | |
nn.Linear( | |
self.output_size[0] * self.output_size[1] * | |
self.output_channels, self.deform_fc_channels), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.deform_fc_channels, self.deform_fc_channels), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.deform_fc_channels, | |
self.output_size[0] * self.output_size[1] * 2)) | |
self.offset_fc[-1].weight.data.zero_() | |
self.offset_fc[-1].bias.data.zero_() | |
def forward(self, input: Tensor, rois: Tensor) -> Tensor: # type: ignore | |
assert input.size(1) == self.output_channels | |
x = deform_roi_pool(input, rois, None, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.gamma) | |
rois_num = rois.size(0) | |
offset = self.offset_fc(x.view(rois_num, -1)) | |
offset = offset.view(rois_num, 2, self.output_size[0], | |
self.output_size[1]) | |
return deform_roi_pool(input, rois, offset, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.gamma) | |
class ModulatedDeformRoIPoolPack(DeformRoIPool): | |
def __init__(self, | |
output_size: Tuple[int, ...], | |
output_channels: int, | |
deform_fc_channels: int = 1024, | |
spatial_scale: float = 1.0, | |
sampling_ratio: int = 0, | |
gamma: float = 0.1): | |
super().__init__(output_size, spatial_scale, sampling_ratio, gamma) | |
self.output_channels = output_channels | |
self.deform_fc_channels = deform_fc_channels | |
self.offset_fc = nn.Sequential( | |
nn.Linear( | |
self.output_size[0] * self.output_size[1] * | |
self.output_channels, self.deform_fc_channels), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.deform_fc_channels, self.deform_fc_channels), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.deform_fc_channels, | |
self.output_size[0] * self.output_size[1] * 2)) | |
self.offset_fc[-1].weight.data.zero_() | |
self.offset_fc[-1].bias.data.zero_() | |
self.mask_fc = nn.Sequential( | |
nn.Linear( | |
self.output_size[0] * self.output_size[1] * | |
self.output_channels, self.deform_fc_channels), | |
nn.ReLU(inplace=True), | |
nn.Linear(self.deform_fc_channels, | |
self.output_size[0] * self.output_size[1] * 1), | |
nn.Sigmoid()) | |
self.mask_fc[2].weight.data.zero_() | |
self.mask_fc[2].bias.data.zero_() | |
def forward(self, input: Tensor, rois: Tensor) -> Tensor: # type: ignore | |
assert input.size(1) == self.output_channels | |
x = deform_roi_pool(input, rois, None, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.gamma) | |
rois_num = rois.size(0) | |
offset = self.offset_fc(x.view(rois_num, -1)) | |
offset = offset.view(rois_num, 2, self.output_size[0], | |
self.output_size[1]) | |
mask = self.mask_fc(x.view(rois_num, -1)) | |
mask = mask.view(rois_num, 1, self.output_size[0], self.output_size[1]) | |
d = deform_roi_pool(input, rois, offset, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.gamma) | |
return d * mask | |