sapiens-pose / external /cv /mmcv /ops /contour_expand.py
rawalkhirodkar's picture
Add initial commit
28c256d
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Union
import numpy as np
import torch
from ..utils import ext_loader
ext_module = ext_loader.load_ext('_ext', ['contour_expand'])
def contour_expand(kernel_mask: Union[np.array, torch.Tensor],
internal_kernel_label: Union[np.array, torch.Tensor],
min_kernel_area: int, kernel_num: int) -> list:
"""Expand kernel contours so that foreground pixels are assigned into
instances.
Args:
kernel_mask (np.array or torch.Tensor): The instance kernel mask with
size hxw.
internal_kernel_label (np.array or torch.Tensor): The instance internal
kernel label with size hxw.
min_kernel_area (int): The minimum kernel area.
kernel_num (int): The instance kernel number.
Returns:
list: The instance index map with size hxw.
"""
assert isinstance(kernel_mask, (torch.Tensor, np.ndarray))
assert isinstance(internal_kernel_label, (torch.Tensor, np.ndarray))
assert isinstance(min_kernel_area, int)
assert isinstance(kernel_num, int)
if isinstance(kernel_mask, np.ndarray):
kernel_mask = torch.from_numpy(kernel_mask)
if isinstance(internal_kernel_label, np.ndarray):
internal_kernel_label = torch.from_numpy(internal_kernel_label)
if torch.__version__ == 'parrots':
if kernel_mask.shape[0] == 0 or internal_kernel_label.shape[0] == 0:
label = []
else:
label = ext_module.contour_expand(
kernel_mask,
internal_kernel_label,
min_kernel_area=min_kernel_area,
kernel_num=kernel_num)
label = label.tolist() # type: ignore
else:
label = ext_module.contour_expand(kernel_mask, internal_kernel_label,
min_kernel_area, kernel_num)
return label