Spaces:
Build error
Build error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from mmengine.registry import MODELS | |
def drop_path(x: torch.Tensor, | |
drop_prob: float = 0., | |
training: bool = False) -> torch.Tensor: | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of | |
residual blocks). | |
We follow the implementation | |
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 | |
""" | |
if not training: | |
return x | |
keep_prob = 1 - drop_prob | |
# handle tensors with different dimensions, not just 4D tensors. | |
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) | |
random_tensor = keep_prob + torch.rand( | |
shape, dtype=x.dtype, device=x.device) | |
output = x.div(keep_prob) * random_tensor.floor() | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of | |
residual blocks). | |
We follow the implementation | |
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501 | |
Args: | |
drop_prob (float): Probability of the path to be zeroed. Default: 0.1 | |
""" | |
def __init__(self, drop_prob: float = 0.1): | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return drop_path(x, self.drop_prob, self.training) | |
class Dropout(nn.Dropout): | |
"""A wrapper for ``torch.nn.Dropout``, We rename the ``p`` of | |
``torch.nn.Dropout`` to ``drop_prob`` so as to be consistent with | |
``DropPath`` | |
Args: | |
drop_prob (float): Probability of the elements to be | |
zeroed. Default: 0.5. | |
inplace (bool): Do the operation inplace or not. Default: False. | |
""" | |
def __init__(self, drop_prob: float = 0.5, inplace: bool = False): | |
super().__init__(p=drop_prob, inplace=inplace) | |
def build_dropout(cfg: Dict, default_args: Optional[Dict] = None) -> Any: | |
"""Builder for drop out layers.""" | |
return MODELS.build(cfg, default_args=default_args) | |