File size: 8,195 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Type, Union

import cv2
import numpy as np
import torch

if TYPE_CHECKING:
    from matplotlib.backends.backend_agg import FigureCanvasAgg


def tensor2ndarray(value: Union[np.ndarray, torch.Tensor]) -> np.ndarray:
    """If the type of value is torch.Tensor, convert the value to np.ndarray.

    Args:
        value (np.ndarray, torch.Tensor): value.

    Returns:
        Any: value.
    """
    if isinstance(value, torch.Tensor):
        value = value.detach().cpu().numpy()
    return value


def value2list(value: Any, valid_type: Union[Type, Tuple[Type, ...]],
               expand_dim: int) -> List[Any]:
    """If the type of ``value`` is ``valid_type``, convert the value to list
    and expand to ``expand_dim``.

    Args:
        value (Any): value.
        valid_type (Union[Type, Tuple[Type, ...]): valid type.
        expand_dim (int): expand dim.

    Returns:
        List[Any]: value.
    """
    if isinstance(value, valid_type):
        value = [value] * expand_dim
    return value


def check_type(name: str, value: Any,
               valid_type: Union[Type, Tuple[Type, ...]]) -> None:
    """Check whether the type of value is in ``valid_type``.

    Args:
        name (str): value name.
        value (Any): value.
        valid_type (Type, Tuple[Type, ...]): expected type.
    """
    if not isinstance(value, valid_type):
        raise TypeError(f'`{name}` should be {valid_type} '
                        f' but got {type(value)}')


def check_length(name: str, value: Any, valid_length: int) -> None:
    """If type of the ``value`` is list, check whether its length is equal with
    or greater than ``valid_length``.

    Args:
        name (str): value name.
        value (Any): value.
        valid_length (int): expected length.
    """
    if isinstance(value, list):
        if len(value) < valid_length:
            raise AssertionError(
                f'The length of {name} must equal with or '
                f'greater than {valid_length}, but got {len(value)}')


def check_type_and_length(name: str, value: Any,
                          valid_type: Union[Type, Tuple[Type, ...]],
                          valid_length: int) -> None:
    """Check whether the type of value is in ``valid_type``. If type of the
    ``value`` is list, check whether its length is equal with or greater than
    ``valid_length``.

    Args:
        value (Any): value.
        legal_type (Type, Tuple[Type, ...]): legal type.
        valid_length (int): expected length.

    Returns:
        List[Any]: value.
    """
    check_type(name, value, valid_type)
    check_length(name, value, valid_length)


def color_val_matplotlib(
    colors: Union[str, tuple, List[Union[str, tuple]]]
) -> Union[str, tuple, List[Union[str, tuple]]]:
    """Convert various input in RGB order to normalized RGB matplotlib color
    tuples,
    Args:
        colors (Union[str, tuple, List[Union[str, tuple]]]): Color inputs
    Returns:
        Union[str, tuple, List[Union[str, tuple]]]: A tuple of 3 normalized
        floats indicating RGB channels.
    """
    if isinstance(colors, str):
        return colors
    elif isinstance(colors, tuple):
        assert len(colors) == 3
        for channel in colors:
            assert 0 <= channel <= 255
        colors = [channel / 255 for channel in colors]
        return tuple(colors)
    elif isinstance(colors, list):
        colors = [
            color_val_matplotlib(color)  # type:ignore
            for color in colors
        ]
        return colors
    else:
        raise TypeError(f'Invalid type for color: {type(colors)}')


def color_str2rgb(color: str) -> tuple:
    """Convert Matplotlib str color to an RGB color which range is 0 to 255,
    silently dropping the alpha channel.

    Args:
        color (str): Matplotlib color.

    Returns:
        tuple: RGB color.
    """
    import matplotlib
    rgb_color: tuple = matplotlib.colors.to_rgb(color)
    rgb_color = tuple(int(c * 255) for c in rgb_color)
    return rgb_color


def convert_overlay_heatmap(feat_map: Union[np.ndarray, torch.Tensor],
                            img: Optional[np.ndarray] = None,
                            alpha: float = 0.5) -> np.ndarray:
    """Convert feat_map to heatmap and overlay on image, if image is not None.

    Args:
        feat_map (np.ndarray, torch.Tensor): The feat_map to convert
            with of shape (H, W), where H is the image height and W is
            the image width.
        img (np.ndarray, optional): The origin image. The format
            should be RGB. Defaults to None.
        alpha (float): The transparency of featmap. Defaults to 0.5.

    Returns:
        np.ndarray: heatmap
    """
    assert feat_map.ndim == 2 or (feat_map.ndim == 3
                                  and feat_map.shape[0] in [1, 3])
    if isinstance(feat_map, torch.Tensor):
        feat_map = feat_map.detach().cpu().numpy()

    if feat_map.ndim == 3:
        feat_map = feat_map.transpose(1, 2, 0)

    norm_img = np.zeros(feat_map.shape)
    norm_img = cv2.normalize(feat_map, norm_img, 0, 255, cv2.NORM_MINMAX)
    norm_img = np.asarray(norm_img, dtype=np.uint8)
    heat_img = cv2.applyColorMap(norm_img, cv2.COLORMAP_JET)
    heat_img = cv2.cvtColor(heat_img, cv2.COLOR_BGR2RGB)
    if img is not None:
        heat_img = cv2.addWeighted(img, 1 - alpha, heat_img, alpha, 0)
    return heat_img


def wait_continue(figure, timeout: float = 0, continue_key: str = ' ') -> int:
    """Show the image and wait for the user's input.

    This implementation refers to
    https://github.com/matplotlib/matplotlib/blob/v3.5.x/lib/matplotlib/_blocking_input.py

    Args:
        timeout (float): If positive, continue after ``timeout`` seconds.
            Defaults to 0.
        continue_key (str): The key for users to continue. Defaults to
            the space key.

    Returns:
        int: If zero, means time out or the user pressed ``continue_key``,
            and if one, means the user closed the show figure.
    """  # noqa: E501
    import matplotlib.pyplot as plt
    from matplotlib.backend_bases import CloseEvent
    is_inline = 'inline' in plt.get_backend()
    if is_inline:
        # If use inline backend, interactive input and timeout is no use.
        return 0

    if figure.canvas.manager:  # type: ignore
        # Ensure that the figure is shown
        figure.show()  # type: ignore

    while True:

        # Connect the events to the handler function call.
        event = None

        def handler(ev):
            # Set external event variable
            nonlocal event
            # Qt backend may fire two events at the same time,
            # use a condition to avoid missing close event.
            event = ev if not isinstance(event, CloseEvent) else event
            figure.canvas.stop_event_loop()

        cids = [
            figure.canvas.mpl_connect(name, handler)  # type: ignore
            for name in ('key_press_event', 'close_event')
        ]

        try:
            figure.canvas.start_event_loop(timeout)  # type: ignore
        finally:  # Run even on exception like ctrl-c.
            # Disconnect the callbacks.
            for cid in cids:
                figure.canvas.mpl_disconnect(cid)  # type: ignore

        if isinstance(event, CloseEvent):
            return 1  # Quit for close.
        elif event is None or event.key == continue_key:
            return 0  # Quit for continue.


def img_from_canvas(canvas: 'FigureCanvasAgg') -> np.ndarray:
    """Get RGB image from ``FigureCanvasAgg``.

    Args:
        canvas (FigureCanvasAgg): The canvas to get image.

    Returns:
        np.ndarray: the output of image in RGB.
    """  # noqa: E501
    s, (width, height) = canvas.print_to_buffer()
    buffer = np.frombuffer(s, dtype='uint8')
    img_rgba = buffer.reshape(height, width, 4)
    rgb, alpha = np.split(img_rgba, [3], axis=2)
    return rgb.astype('uint8')