Spaces:
Build error
Build error
File size: 13,634 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from collections.abc import Sized
from typing import Any, List, Union
import numpy as np
import torch
from mmengine.device import get_device
from .base_data_element import BaseDataElement
BoolTypeTensor: Union[Any]
LongTypeTensor: Union[Any]
if get_device() == 'npu':
BoolTypeTensor = Union[torch.BoolTensor, torch.npu.BoolTensor]
LongTypeTensor = Union[torch.LongTensor, torch.npu.LongTensor]
elif get_device() == 'mlu':
BoolTypeTensor = Union[torch.BoolTensor, torch.mlu.BoolTensor]
LongTypeTensor = Union[torch.LongTensor, torch.mlu.LongTensor]
else:
BoolTypeTensor = Union[torch.BoolTensor, torch.cuda.BoolTensor]
LongTypeTensor = Union[torch.LongTensor, torch.cuda.LongTensor]
IndexType: Union[Any] = Union[str, slice, int, list, LongTypeTensor,
BoolTypeTensor, np.ndarray]
# Modified from
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/data_structures/instance_data.py # noqa
class InstanceData(BaseDataElement):
"""Data structure for instance-level annotations or predictions.
Subclass of :class:`BaseDataElement`. All value in `data_fields`
should have the same length. This design refer to
https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/instances.py # noqa E501
InstanceData also support extra functions: ``index``, ``slice`` and ``cat`` for data field. The type of value
in data field can be base data structure such as `torch.Tensor`, `numpy.ndarray`, `list`, `str`, `tuple`,
and can be customized data structure that has ``__len__``, ``__getitem__`` and ``cat`` attributes.
Examples:
>>> # custom data structure
>>> class TmpObject:
... def __init__(self, tmp) -> None:
... assert isinstance(tmp, list)
... self.tmp = tmp
... def __len__(self):
... return len(self.tmp)
... def __getitem__(self, item):
... if isinstance(item, int):
... if item >= len(self) or item < -len(self): # type:ignore
... raise IndexError(f'Index {item} out of range!')
... else:
... # keep the dimension
... item = slice(item, None, len(self))
... return TmpObject(self.tmp[item])
... @staticmethod
... def cat(tmp_objs):
... assert all(isinstance(results, TmpObject) for results in tmp_objs)
... if len(tmp_objs) == 1:
... return tmp_objs[0]
... tmp_list = [tmp_obj.tmp for tmp_obj in tmp_objs]
... tmp_list = list(itertools.chain(*tmp_list))
... new_data = TmpObject(tmp_list)
... return new_data
... def __repr__(self):
... return str(self.tmp)
>>> from mmengine.structures import InstanceData
>>> import numpy as np
>>> import torch
>>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
>>> instance_data = InstanceData(metainfo=img_meta)
>>> 'img_shape' in instance_data
True
>>> instance_data.det_labels = torch.LongTensor([2, 3])
>>> instance_data["det_scores"] = torch.Tensor([0.8, 0.7])
>>> instance_data.bboxes = torch.rand((2, 4))
>>> instance_data.polygons = TmpObject([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> len(instance_data)
2
>>> print(instance_data)
<InstanceData(
META INFORMATION
img_shape: (800, 1196, 3)
pad_shape: (800, 1216, 3)
DATA FIELDS
det_labels: tensor([2, 3])
det_scores: tensor([0.8000, 0.7000])
bboxes: tensor([[0.4997, 0.7707, 0.0595, 0.4188],
[0.8101, 0.3105, 0.5123, 0.6263]])
polygons: [[1, 2, 3, 4], [5, 6, 7, 8]]
) at 0x7fb492de6280>
>>> sorted_results = instance_data[instance_data.det_scores.sort().indices]
>>> sorted_results.det_scores
tensor([0.7000, 0.8000])
>>> print(instance_data[instance_data.det_scores > 0.75])
<InstanceData(
META INFORMATION
img_shape: (800, 1196, 3)
pad_shape: (800, 1216, 3)
DATA FIELDS
det_labels: tensor([2])
det_scores: tensor([0.8000])
bboxes: tensor([[0.4997, 0.7707, 0.0595, 0.4188]])
polygons: [[1, 2, 3, 4]]
) at 0x7f64ecf0ec40>
>>> print(instance_data[instance_data.det_scores > 1])
<InstanceData(
META INFORMATION
img_shape: (800, 1196, 3)
pad_shape: (800, 1216, 3)
DATA FIELDS
det_labels: tensor([], dtype=torch.int64)
det_scores: tensor([])
bboxes: tensor([], size=(0, 4))
polygons: []
) at 0x7f660a6a7f70>
>>> print(instance_data.cat([instance_data, instance_data]))
<InstanceData(
META INFORMATION
img_shape: (800, 1196, 3)
pad_shape: (800, 1216, 3)
DATA FIELDS
det_labels: tensor([2, 3, 2, 3])
det_scores: tensor([0.8000, 0.7000, 0.8000, 0.7000])
bboxes: tensor([[0.4997, 0.7707, 0.0595, 0.4188],
[0.8101, 0.3105, 0.5123, 0.6263],
[0.4997, 0.7707, 0.0595, 0.4188],
[0.8101, 0.3105, 0.5123, 0.6263]])
polygons: [[1, 2, 3, 4], [5, 6, 7, 8], [1, 2, 3, 4], [5, 6, 7, 8]]
) at 0x7f203542feb0>
"""
def __setattr__(self, name: str, value: Sized):
"""setattr is only used to set data.
The value must have the attribute of `__len__` and have the same length
of `InstanceData`.
"""
if name in ('_metainfo_fields', '_data_fields'):
if not hasattr(self, name):
super().__setattr__(name, value)
else:
raise AttributeError(f'{name} has been used as a '
'private attribute, which is immutable.')
else:
assert isinstance(value,
Sized), 'value must contain `__len__` attribute'
if len(self) > 0:
assert len(value) == len(self), 'The length of ' \
f'values {len(value)} is ' \
'not consistent with ' \
'the length of this ' \
':obj:`InstanceData` ' \
f'{len(self)}'
super().__setattr__(name, value)
__setitem__ = __setattr__
def __getitem__(self, item: IndexType) -> 'InstanceData':
"""
Args:
item (str, int, list, :obj:`slice`, :obj:`numpy.ndarray`,
:obj:`torch.LongTensor`, :obj:`torch.BoolTensor`):
Get the corresponding values according to item.
Returns:
:obj:`InstanceData`: Corresponding values.
"""
assert isinstance(item, IndexType.__args__)
if isinstance(item, list):
item = np.array(item)
if isinstance(item, np.ndarray):
# The default int type of numpy is platform dependent, int32 for
# windows and int64 for linux. `torch.Tensor` requires the index
# should be int64, therefore we simply convert it to int64 here.
# More details in https://github.com/numpy/numpy/issues/9464
item = item.astype(np.int64) if item.dtype == np.int32 else item
item = torch.from_numpy(item)
if isinstance(item, str):
return getattr(self, item)
if isinstance(item, int):
if item >= len(self) or item < -len(self): # type:ignore
raise IndexError(f'Index {item} out of range!')
else:
# keep the dimension
item = slice(item, None, len(self))
new_data = self.__class__(metainfo=self.metainfo)
if isinstance(item, torch.Tensor):
assert item.dim() == 1, 'Only support to get the' \
' values along the first dimension.'
if isinstance(item, BoolTypeTensor.__args__):
assert len(item) == len(self), 'The shape of the ' \
'input(BoolTensor) ' \
f'{len(item)} ' \
'does not match the shape ' \
'of the indexed tensor ' \
'in results_field ' \
f'{len(self)} at ' \
'first dimension.'
for k, v in self.items():
if isinstance(v, torch.Tensor):
new_data[k] = v[item]
elif isinstance(v, np.ndarray):
new_data[k] = v[item.cpu().numpy()]
elif isinstance(
v, (str, list, tuple)) or (hasattr(v, '__getitem__')
and hasattr(v, 'cat')):
# convert to indexes from BoolTensor
if isinstance(item, BoolTypeTensor.__args__):
indexes = torch.nonzero(item).view(
-1).cpu().numpy().tolist()
else:
indexes = item.cpu().numpy().tolist()
slice_list = []
if indexes:
for index in indexes:
slice_list.append(slice(index, None, len(v)))
else:
slice_list.append(slice(None, 0, None))
r_list = [v[s] for s in slice_list]
if isinstance(v, (str, list, tuple)):
new_value = r_list[0]
for r in r_list[1:]:
new_value = new_value + r
else:
new_value = v.cat(r_list)
new_data[k] = new_value
else:
raise ValueError(
f'The type of `{k}` is `{type(v)}`, which has no '
'attribute of `cat`, so it does not '
'support slice with `bool`')
else:
# item is a slice
for k, v in self.items():
new_data[k] = v[item]
return new_data # type:ignore
@staticmethod
def cat(instances_list: List['InstanceData']) -> 'InstanceData':
"""Concat the instances of all :obj:`InstanceData` in the list.
Note: To ensure that cat returns as expected, make sure that
all elements in the list must have exactly the same keys.
Args:
instances_list (list[:obj:`InstanceData`]): A list
of :obj:`InstanceData`.
Returns:
:obj:`InstanceData`
"""
assert all(
isinstance(results, InstanceData) for results in instances_list)
assert len(instances_list) > 0
if len(instances_list) == 1:
return instances_list[0]
# metainfo and data_fields must be exactly the
# same for each element to avoid exceptions.
field_keys_list = [
instances.all_keys() for instances in instances_list
]
assert len({len(field_keys) for field_keys in field_keys_list}) \
== 1 and len(set(itertools.chain(*field_keys_list))) \
== len(field_keys_list[0]), 'There are different keys in ' \
'`instances_list`, which may ' \
'cause the cat operation ' \
'to fail. Please make sure all ' \
'elements in `instances_list` ' \
'have the exact same key.'
new_data = instances_list[0].__class__(
metainfo=instances_list[0].metainfo)
for k in instances_list[0].keys():
values = [results[k] for results in instances_list]
v0 = values[0]
if isinstance(v0, torch.Tensor):
new_values = torch.cat(values, dim=0)
elif isinstance(v0, np.ndarray):
new_values = np.concatenate(values, axis=0)
elif isinstance(v0, (str, list, tuple)):
new_values = v0[:]
for v in values[1:]:
new_values += v
elif hasattr(v0, 'cat'):
new_values = v0.cat(values)
else:
raise ValueError(
f'The type of `{k}` is `{type(v0)}` which has no '
'attribute of `cat`')
new_data[k] = new_values
return new_data # type:ignore
def __len__(self) -> int:
"""int: The length of InstanceData."""
if len(self._data_fields) > 0:
return len(self.values()[0])
else:
return 0
|