Spaces:
Build error
Build error
File size: 24,724 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
from typing import Any, Iterator, Optional, Tuple, Type, Union
import numpy as np
import torch
class BaseDataElement:
"""A base data interface that supports Tensor-like and dict-like
operations.
A typical data elements refer to predicted results or ground truth labels
on a task, such as predicted bboxes, instance masks, semantic
segmentation masks, etc. Because groundtruth labels and predicted results
often have similar properties (for example, the predicted bboxes and the
groundtruth bboxes), MMEngine uses the same abstract data interface to
encapsulate predicted results and groundtruth labels, and it is recommended
to use different name conventions to distinguish them, such as using
``gt_instances`` and ``pred_instances`` to distinguish between labels and
predicted results. Additionally, we distinguish data elements at instance
level, pixel level, and label level. Each of these types has its own
characteristics. Therefore, MMEngine defines the base class
``BaseDataElement``, and implement ``InstanceData``, ``PixelData``, and
``LabelData`` inheriting from ``BaseDataElement`` to represent different
types of ground truth labels or predictions.
Another common data element is sample data. A sample data consists of input
data (such as an image) and its annotations and predictions. In general,
an image can have multiple types of annotations and/or predictions at the
same time (for example, both pixel-level semantic segmentation annotations
and instance-level detection bboxes annotations). All labels and
predictions of a training sample are often passed between Dataset, Model,
Visualizer, and Evaluator components. In order to simplify the interface
between components, we can treat them as a large data element and
encapsulate them. Such data elements are generally called XXDataSample in
the OpenMMLab. Therefore, Similar to `nn.Module`, the `BaseDataElement`
allows `BaseDataElement` as its attribute. Such a class generally
encapsulates all the data of a sample in the algorithm library, and its
attributes generally are various types of data elements. For example,
MMDetection is assigned by the BaseDataElement to encapsulate all the data
elements of the sample labeling and prediction of a sample in the
algorithm library.
The attributes in ``BaseDataElement`` are divided into two parts,
the ``metainfo`` and the ``data`` respectively.
- ``metainfo``: Usually contains the
information about the image such as filename,
image_shape, pad_shape, etc. The attributes can be accessed or
modified by dict-like or object-like operations, such as
``.`` (for data access and modification), ``in``, ``del``,
``pop(str)``, ``get(str)``, ``metainfo_keys()``,
``metainfo_values()``, ``metainfo_items()``, ``set_metainfo()`` (for
set or change key-value pairs in metainfo).
- ``data``: Annotations or model predictions are
stored. The attributes can be accessed or modified by
dict-like or object-like operations, such as
``.``, ``in``, ``del``, ``pop(str)``, ``get(str)``, ``keys()``,
``values()``, ``items()``. Users can also apply tensor-like
methods to all :obj:`torch.Tensor` in the ``data_fields``,
such as ``.cuda()``, ``.cpu()``, ``.numpy()``, ``.to()``,
``to_tensor()``, ``.detach()``.
Args:
metainfo (dict, optional): A dict contains the meta information
of single image, such as ``dict(img_shape=(512, 512, 3),
scale_factor=(1, 1, 1, 1))``. Defaults to None.
kwargs (dict, optional): A dict contains annotations of single image or
model predictions. Defaults to None.
Examples:
>>> import torch
>>> from mmengine.structures import BaseDataElement
>>> gt_instances = BaseDataElement()
>>> bboxes = torch.rand((5, 4))
>>> scores = torch.rand((5,))
>>> img_id = 0
>>> img_shape = (800, 1333)
>>> gt_instances = BaseDataElement(
... metainfo=dict(img_id=img_id, img_shape=img_shape),
... bboxes=bboxes, scores=scores)
>>> gt_instances = BaseDataElement(
... metainfo=dict(img_id=img_id, img_shape=(640, 640)))
>>> # new
>>> gt_instances1 = gt_instances.new(
... metainfo=dict(img_id=1, img_shape=(640, 640)),
... bboxes=torch.rand((5, 4)),
... scores=torch.rand((5,)))
>>> gt_instances2 = gt_instances1.new()
>>> # add and process property
>>> gt_instances = BaseDataElement()
>>> gt_instances.set_metainfo(dict(img_id=9, img_shape=(100, 100)))
>>> assert 'img_shape' in gt_instances.metainfo_keys()
>>> assert 'img_shape' in gt_instances
>>> assert 'img_shape' not in gt_instances.keys()
>>> assert 'img_shape' in gt_instances.all_keys()
>>> print(gt_instances.img_shape)
(100, 100)
>>> gt_instances.scores = torch.rand((5,))
>>> assert 'scores' in gt_instances.keys()
>>> assert 'scores' in gt_instances
>>> assert 'scores' in gt_instances.all_keys()
>>> assert 'scores' not in gt_instances.metainfo_keys()
>>> print(gt_instances.scores)
tensor([0.5230, 0.7885, 0.2426, 0.3911, 0.4876])
>>> gt_instances.bboxes = torch.rand((5, 4))
>>> assert 'bboxes' in gt_instances.keys()
>>> assert 'bboxes' in gt_instances
>>> assert 'bboxes' in gt_instances.all_keys()
>>> assert 'bboxes' not in gt_instances.metainfo_keys()
>>> print(gt_instances.bboxes)
tensor([[0.0900, 0.0424, 0.1755, 0.4469],
[0.8648, 0.0592, 0.3484, 0.0913],
[0.5808, 0.1909, 0.6165, 0.7088],
[0.5490, 0.4209, 0.9416, 0.2374],
[0.3652, 0.1218, 0.8805, 0.7523]])
>>> # delete and change property
>>> gt_instances = BaseDataElement(
... metainfo=dict(img_id=0, img_shape=(640, 640)),
... bboxes=torch.rand((6, 4)), scores=torch.rand((6,)))
>>> gt_instances.set_metainfo(dict(img_shape=(1280, 1280)))
>>> gt_instances.img_shape # (1280, 1280)
>>> gt_instances.bboxes = gt_instances.bboxes * 2
>>> gt_instances.get('img_shape', None) # (1280, 1280)
>>> gt_instances.get('bboxes', None) # 6x4 tensor
>>> del gt_instances.img_shape
>>> del gt_instances.bboxes
>>> assert 'img_shape' not in gt_instances
>>> assert 'bboxes' not in gt_instances
>>> gt_instances.pop('img_shape', None) # None
>>> gt_instances.pop('bboxes', None) # None
>>> # Tensor-like
>>> cuda_instances = gt_instances.cuda()
>>> cuda_instances = gt_instances.to('cuda:0')
>>> cpu_instances = cuda_instances.cpu()
>>> cpu_instances = cuda_instances.to('cpu')
>>> fp16_instances = cuda_instances.to(
... device=None, dtype=torch.float16, non_blocking=False,
... copy=False, memory_format=torch.preserve_format)
>>> cpu_instances = cuda_instances.detach()
>>> np_instances = cpu_instances.numpy()
>>> # print
>>> metainfo = dict(img_shape=(800, 1196, 3))
>>> gt_instances = BaseDataElement(
... metainfo=metainfo, det_labels=torch.LongTensor([0, 1, 2, 3]))
>>> sample = BaseDataElement(metainfo=metainfo,
... gt_instances=gt_instances)
>>> print(sample)
<BaseDataElement(
META INFORMATION
img_shape: (800, 1196, 3)
DATA FIELDS
gt_instances: <BaseDataElement(
META INFORMATION
img_shape: (800, 1196, 3)
DATA FIELDS
det_labels: tensor([0, 1, 2, 3])
) at 0x7f0ec5eadc70>
) at 0x7f0fea49e130>
>>> # inheritance
>>> class DetDataSample(BaseDataElement):
... @property
... def proposals(self):
... return self._proposals
... @proposals.setter
... def proposals(self, value):
... self.set_field(value, '_proposals', dtype=BaseDataElement)
... @proposals.deleter
... def proposals(self):
... del self._proposals
... @property
... def gt_instances(self):
... return self._gt_instances
... @gt_instances.setter
... def gt_instances(self, value):
... self.set_field(value, '_gt_instances',
... dtype=BaseDataElement)
... @gt_instances.deleter
... def gt_instances(self):
... del self._gt_instances
... @property
... def pred_instances(self):
... return self._pred_instances
... @pred_instances.setter
... def pred_instances(self, value):
... self.set_field(value, '_pred_instances',
... dtype=BaseDataElement)
... @pred_instances.deleter
... def pred_instances(self):
... del self._pred_instances
>>> det_sample = DetDataSample()
>>> proposals = BaseDataElement(bboxes=torch.rand((5, 4)))
>>> det_sample.proposals = proposals
>>> assert 'proposals' in det_sample
>>> assert det_sample.proposals == proposals
>>> del det_sample.proposals
>>> assert 'proposals' not in det_sample
>>> with self.assertRaises(AssertionError):
... det_sample.proposals = torch.rand((5, 4))
"""
def __init__(self, *, metainfo: Optional[dict] = None, **kwargs) -> None:
self._metainfo_fields: set = set()
self._data_fields: set = set()
if metainfo is not None:
self.set_metainfo(metainfo=metainfo)
if kwargs:
self.set_data(kwargs)
def set_metainfo(self, metainfo: dict) -> None:
"""Set or change key-value pairs in ``metainfo_field`` by parameter
``metainfo``.
Args:
metainfo (dict): A dict contains the meta information
of image, such as ``img_shape``, ``scale_factor``, etc.
"""
assert isinstance(
metainfo,
dict), f'metainfo should be a ``dict`` but got {type(metainfo)}'
meta = copy.deepcopy(metainfo)
for k, v in meta.items():
self.set_field(name=k, value=v, field_type='metainfo', dtype=None)
def set_data(self, data: dict) -> None:
"""Set or change key-value pairs in ``data_field`` by parameter
``data``.
Args:
data (dict): A dict contains annotations of image or
model predictions.
"""
assert isinstance(data,
dict), f'data should be a `dict` but got {data}'
for k, v in data.items():
# Use `setattr()` rather than `self.set_field` to allow `set_data`
# to set property method.
setattr(self, k, v)
def update(self, instance: 'BaseDataElement') -> None:
"""The update() method updates the BaseDataElement with the elements
from another BaseDataElement object.
Args:
instance (BaseDataElement): Another BaseDataElement object for
update the current object.
"""
assert isinstance(
instance, BaseDataElement
), f'instance should be a `BaseDataElement` but got {type(instance)}'
self.set_metainfo(dict(instance.metainfo_items()))
self.set_data(dict(instance.items()))
def new(self,
*,
metainfo: Optional[dict] = None,
**kwargs) -> 'BaseDataElement':
"""Return a new data element with same type. If ``metainfo`` and
``data`` are None, the new data element will have same metainfo and
data. If metainfo or data is not None, the new result will overwrite it
with the input value.
Args:
metainfo (dict, optional): A dict contains the meta information
of image, such as ``img_shape``, ``scale_factor``, etc.
Defaults to None.
kwargs (dict): A dict contains annotations of image or
model predictions.
Returns:
BaseDataElement: A new data element with same type.
"""
new_data = self.__class__()
if metainfo is not None:
new_data.set_metainfo(metainfo)
else:
new_data.set_metainfo(dict(self.metainfo_items()))
if kwargs:
new_data.set_data(kwargs)
else:
new_data.set_data(dict(self.items()))
return new_data
def clone(self):
"""Deep copy the current data element.
Returns:
BaseDataElement: The copy of current data element.
"""
clone_data = self.__class__()
clone_data.set_metainfo(dict(self.metainfo_items()))
clone_data.set_data(dict(self.items()))
return clone_data
def keys(self) -> list:
"""
Returns:
list: Contains all keys in data_fields.
"""
# We assume that the name of the attribute related to property is
# '_' + the name of the property. We use this rule to filter out
# private keys.
# TODO: Use a more robust way to solve this problem
private_keys = {
'_' + key
for key in self._data_fields
if isinstance(getattr(type(self), key, None), property)
}
return list(self._data_fields - private_keys)
def metainfo_keys(self) -> list:
"""
Returns:
list: Contains all keys in metainfo_fields.
"""
return list(self._metainfo_fields)
def values(self) -> list:
"""
Returns:
list: Contains all values in data.
"""
return [getattr(self, k) for k in self.keys()]
def metainfo_values(self) -> list:
"""
Returns:
list: Contains all values in metainfo.
"""
return [getattr(self, k) for k in self.metainfo_keys()]
def all_keys(self) -> list:
"""
Returns:
list: Contains all keys in metainfo and data.
"""
return self.metainfo_keys() + self.keys()
def all_values(self) -> list:
"""
Returns:
list: Contains all values in metainfo and data.
"""
return self.metainfo_values() + self.values()
def all_items(self) -> Iterator[Tuple[str, Any]]:
"""
Returns:
iterator: An iterator object whose element is (key, value) tuple
pairs for ``metainfo`` and ``data``.
"""
for k in self.all_keys():
yield (k, getattr(self, k))
def items(self) -> Iterator[Tuple[str, Any]]:
"""
Returns:
iterator: An iterator object whose element is (key, value) tuple
pairs for ``data``.
"""
for k in self.keys():
yield (k, getattr(self, k))
def metainfo_items(self) -> Iterator[Tuple[str, Any]]:
"""
Returns:
iterator: An iterator object whose element is (key, value) tuple
pairs for ``metainfo``.
"""
for k in self.metainfo_keys():
yield (k, getattr(self, k))
@property
def metainfo(self) -> dict:
"""dict: A dict contains metainfo of current data element."""
return dict(self.metainfo_items())
def __setattr__(self, name: str, value: Any):
"""setattr is only used to set data."""
if name in ('_metainfo_fields', '_data_fields'):
if not hasattr(self, name):
super().__setattr__(name, value)
else:
raise AttributeError(f'{name} has been used as a '
'private attribute, which is immutable.')
else:
self.set_field(
name=name, value=value, field_type='data', dtype=None)
def __delattr__(self, item: str):
"""Delete the item in dataelement.
Args:
item (str): The key to delete.
"""
if item in ('_metainfo_fields', '_data_fields'):
raise AttributeError(f'{item} has been used as a '
'private attribute, which is immutable.')
super().__delattr__(item)
if item in self._metainfo_fields:
self._metainfo_fields.remove(item)
elif item in self._data_fields:
self._data_fields.remove(item)
# dict-like methods
__delitem__ = __delattr__
def get(self, key, default=None) -> Any:
"""Get property in data and metainfo as the same as python."""
# Use `getattr()` rather than `self.__dict__.get()` to allow getting
# properties.
return getattr(self, key, default)
def pop(self, *args) -> Any:
"""Pop property in data and metainfo as the same as python."""
assert len(args) < 3, '``pop`` get more than 2 arguments'
name = args[0]
if name in self._metainfo_fields:
self._metainfo_fields.remove(args[0])
return self.__dict__.pop(*args)
elif name in self._data_fields:
self._data_fields.remove(args[0])
return self.__dict__.pop(*args)
# with default value
elif len(args) == 2:
return args[1]
else:
# don't just use 'self.__dict__.pop(*args)' for only popping key in
# metainfo or data
raise KeyError(f'{args[0]} is not contained in metainfo or data')
def __contains__(self, item: str) -> bool:
"""Whether the item is in dataelement.
Args:
item (str): The key to inquire.
"""
return item in self._data_fields or item in self._metainfo_fields
def set_field(self,
value: Any,
name: str,
dtype: Optional[Union[Type, Tuple[Type, ...]]] = None,
field_type: str = 'data') -> None:
"""Special method for set union field, used as property.setter
functions."""
assert field_type in ['metainfo', 'data']
if dtype is not None:
assert isinstance(
value,
dtype), f'{value} should be a {dtype} but got {type(value)}'
if field_type == 'metainfo':
if name in self._data_fields:
raise AttributeError(
f'Cannot set {name} to be a field of metainfo '
f'because {name} is already a data field')
self._metainfo_fields.add(name)
else:
if name in self._metainfo_fields:
raise AttributeError(
f'Cannot set {name} to be a field of data '
f'because {name} is already a metainfo field')
self._data_fields.add(name)
super().__setattr__(name, value)
# Tensor-like methods
def to(self, *args, **kwargs) -> 'BaseDataElement':
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if hasattr(v, 'to'):
v = v.to(*args, **kwargs)
data = {k: v}
new_data.set_data(data)
return new_data
# Tensor-like methods
def cpu(self) -> 'BaseDataElement':
"""Convert all tensors to CPU in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.cpu()
data = {k: v}
new_data.set_data(data)
return new_data
# Tensor-like methods
def cuda(self) -> 'BaseDataElement':
"""Convert all tensors to GPU in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.cuda()
data = {k: v}
new_data.set_data(data)
return new_data
# Tensor-like methods
def npu(self) -> 'BaseDataElement':
"""Convert all tensors to NPU in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.npu()
data = {k: v}
new_data.set_data(data)
return new_data
def mlu(self) -> 'BaseDataElement':
"""Convert all tensors to MLU in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.mlu()
data = {k: v}
new_data.set_data(data)
return new_data
# Tensor-like methods
def detach(self) -> 'BaseDataElement':
"""Detach all tensors in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.detach()
data = {k: v}
new_data.set_data(data)
return new_data
# Tensor-like methods
def numpy(self) -> 'BaseDataElement':
"""Convert all tensors to np.ndarray in data."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, (torch.Tensor, BaseDataElement)):
v = v.detach().cpu().numpy()
data = {k: v}
new_data.set_data(data)
return new_data
def to_tensor(self) -> 'BaseDataElement':
"""Convert all np.ndarray to tensor in data."""
new_data = self.new()
for k, v in self.items():
data = {}
if isinstance(v, np.ndarray):
v = torch.from_numpy(v)
data[k] = v
elif isinstance(v, BaseDataElement):
v = v.to_tensor()
data[k] = v
new_data.set_data(data)
return new_data
def to_dict(self) -> dict:
"""Convert BaseDataElement to dict."""
return {
k: v.to_dict() if isinstance(v, BaseDataElement) else v
for k, v in self.all_items()
}
def __repr__(self) -> str:
"""Represent the object."""
def _addindent(s_: str, num_spaces: int) -> str:
"""This func is modified from `pytorch` https://github.com/pytorch/
pytorch/blob/b17b2b1cc7b017c3daaeff8cc7ec0f514d42ec37/torch/nn/modu
les/module.py#L29.
Args:
s_ (str): The string to add spaces.
num_spaces (int): The num of space to add.
Returns:
str: The string after add indent.
"""
s = s_.split('\n')
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(num_spaces * ' ') + line for line in s]
s = '\n'.join(s) # type: ignore
s = first + '\n' + s # type: ignore
return s # type: ignore
def dump(obj: Any) -> str:
"""Represent the object.
Args:
obj (Any): The obj to represent.
Returns:
str: The represented str.
"""
_repr = ''
if isinstance(obj, dict):
for k, v in obj.items():
_repr += f'\n{k}: {_addindent(dump(v), 4)}'
elif isinstance(obj, BaseDataElement):
_repr += '\n\n META INFORMATION'
metainfo_items = dict(obj.metainfo_items())
_repr += _addindent(dump(metainfo_items), 4)
_repr += '\n\n DATA FIELDS'
items = dict(obj.items())
_repr += _addindent(dump(items), 4)
classname = obj.__class__.__name__
_repr = f'<{classname}({_repr}\n) at {hex(id(obj))}>'
else:
_repr += repr(obj)
return _repr
return dump(self)
|