Spaces:
Build error
Build error
File size: 3,152 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import random
from typing import List, Optional, Tuple
import numpy as np
import torch
from mmengine.dist import get_rank, sync_random_seed
from mmengine.logging import print_log
from mmengine.utils import digit_version, is_list_of
from mmengine.utils.dl_utils import TORCH_VERSION
def calc_dynamic_intervals(
start_interval: int,
dynamic_interval_list: Optional[List[Tuple[int, int]]] = None
) -> Tuple[List[int], List[int]]:
"""Calculate dynamic intervals.
Args:
start_interval (int): The interval used in the beginning.
dynamic_interval_list (List[Tuple[int, int]], optional): The
first element in the tuple is a milestone and the second
element is a interval. The interval is used after the
corresponding milestone. Defaults to None.
Returns:
Tuple[List[int], List[int]]: a list of milestone and its corresponding
intervals.
"""
if dynamic_interval_list is None:
return [0], [start_interval]
assert is_list_of(dynamic_interval_list, tuple)
dynamic_milestones = [0]
dynamic_milestones.extend(
[dynamic_interval[0] for dynamic_interval in dynamic_interval_list])
dynamic_intervals = [start_interval]
dynamic_intervals.extend(
[dynamic_interval[1] for dynamic_interval in dynamic_interval_list])
return dynamic_milestones, dynamic_intervals
def set_random_seed(seed: Optional[int] = None,
deterministic: bool = False,
diff_rank_seed: bool = False) -> int:
"""Set random seed.
Args:
seed (int, optional): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Defaults to False.
diff_rank_seed (bool): Whether to add rank number to the random seed to
have different random seed in different threads. Defaults to False.
"""
if seed is None:
seed = sync_random_seed()
if diff_rank_seed:
rank = get_rank()
seed += rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# os.environ['PYTHONHASHSEED'] = str(seed)
if deterministic:
if torch.backends.cudnn.benchmark:
print_log(
'torch.backends.cudnn.benchmark is going to be set as '
'`False` to cause cuDNN to deterministically select an '
'algorithm',
logger='current',
level=logging.WARNING)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if digit_version(TORCH_VERSION) >= digit_version('1.10.0'):
torch.use_deterministic_algorithms(True)
return seed
|