Spaces:
Build error
Build error
File size: 17,347 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import logging
import time
from typing import Dict, List, Optional, Sequence, Tuple, Union
import torch
from torch.utils.data import DataLoader
from mmengine.evaluator import Evaluator
from mmengine.logging import print_log
from mmengine.registry import LOOPS
from .amp import autocast
from .base_loop import BaseLoop
from .utils import calc_dynamic_intervals
import socket
@LOOPS.register_module()
class EpochBasedTrainLoop(BaseLoop):
"""Loop for epoch-based training.
Args:
runner (Runner): A reference of runner.
dataloader (Dataloader or dict): A dataloader object or a dict to
build a dataloader.
max_epochs (int): Total training epochs.
val_begin (int): The epoch that begins validating.
Defaults to 1.
val_interval (int): Validation interval. Defaults to 1.
dynamic_intervals (List[Tuple[int, int]], optional): The
first element in the tuple is a milestone and the second
element is a interval. The interval is used after the
corresponding milestone. Defaults to None.
"""
def __init__(
self,
runner,
dataloader: Union[DataLoader, Dict],
max_epochs: int,
val_begin: int = 1,
val_interval: int = 1,
dynamic_intervals: Optional[List[Tuple[int, int]]] = None) -> None:
super().__init__(runner, dataloader)
self._max_epochs = int(max_epochs)
assert self._max_epochs == max_epochs, \
f'`max_epochs` should be a integer number, but get {max_epochs}.'
self._max_iters = self._max_epochs * len(self.dataloader)
self._epoch = 0
self._iter = 0
self.val_begin = val_begin
self.val_interval = val_interval
# This attribute will be updated by `EarlyStoppingHook`
# when it is enabled.
self.stop_training = False
if hasattr(self.dataloader.dataset, 'metainfo'):
self.runner.visualizer.dataset_meta = \
self.dataloader.dataset.metainfo
else:
print_log(
f'Dataset {self.dataloader.dataset.__class__.__name__} has no '
'metainfo. ``dataset_meta`` in visualizer will be '
'None.',
logger='current',
level=logging.WARNING)
self.dynamic_milestones, self.dynamic_intervals = \
calc_dynamic_intervals(
self.val_interval, dynamic_intervals)
@property
def max_epochs(self):
"""int: Total epochs to train model."""
return self._max_epochs
@property
def max_iters(self):
"""int: Total iterations to train model."""
return self._max_iters
@property
def epoch(self):
"""int: Current epoch."""
return self._epoch
@property
def iter(self):
"""int: Current iteration."""
return self._iter
def run(self) -> torch.nn.Module:
"""Launch training."""
self.runner.call_hook('before_train')
while self._epoch < self._max_epochs and not self.stop_training:
self.run_epoch()
self._decide_current_val_interval()
if (self.runner.val_loop is not None
and self._epoch >= self.val_begin
and self._epoch % self.val_interval == 0):
self.runner.val_loop.run()
self.runner.call_hook('after_train')
return self.runner.model
def run_epoch(self) -> None:
"""Iterate one epoch."""
self.runner.call_hook('before_train_epoch')
self.runner.model.train()
for idx, data_batch in enumerate(self.dataloader):
self.run_iter(idx, data_batch)
self.runner.call_hook('after_train_epoch')
self._epoch += 1
def run_iter(self, idx, data_batch: Sequence[dict]) -> None:
"""Iterate one min-batch.
Args:
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
self.runner.call_hook(
'before_train_iter', batch_idx=idx, data_batch=data_batch)
# Enable gradient accumulation mode and avoid unnecessary gradient
# synchronization during gradient accumulation process.
# outputs should be a dict of loss.
outputs = self.runner.model.train_step(
data_batch, optim_wrapper=self.runner.optim_wrapper)
self.runner.call_hook(
'after_train_iter',
batch_idx=idx,
data_batch=data_batch,
outputs=outputs)
self._iter += 1
def _decide_current_val_interval(self) -> None:
"""Dynamically modify the ``val_interval``."""
step = bisect.bisect(self.dynamic_milestones, (self.epoch + 1))
self.val_interval = self.dynamic_intervals[step - 1]
class _InfiniteDataloaderIterator:
"""An infinite dataloader iterator wrapper for IterBasedTrainLoop.
It resets the dataloader to continue iterating when the iterator has
iterated over all the data. However, this approach is not efficient, as the
workers need to be restarted every time the dataloader is reset. It is
recommended to use `mmengine.dataset.InfiniteSampler` to enable the
dataloader to iterate infinitely.
"""
def __init__(self, dataloader: DataLoader) -> None:
self._dataloader = dataloader
self._iterator = iter(self._dataloader)
self._epoch = 0
def __iter__(self):
return self
def __next__(self) -> Sequence[dict]:
try:
data = next(self._iterator)
except StopIteration:
print_log(
'Reach the end of the dataloader, it will be '
'restarted and continue to iterate. It is '
'recommended to use '
'`mmengine.dataset.InfiniteSampler` to enable the '
'dataloader to iterate infinitely.',
logger='current',
level=logging.WARNING)
self._epoch += 1
if hasattr(self._dataloader, 'sampler') and hasattr(
self._dataloader.sampler, 'set_epoch'):
# In case the` _SingleProcessDataLoaderIter` has no sampler,
# or data loader uses `SequentialSampler` in Pytorch.
self._dataloader.sampler.set_epoch(self._epoch)
elif hasattr(self._dataloader, 'batch_sampler') and hasattr(
self._dataloader.batch_sampler.sampler, 'set_epoch'):
# In case the` _SingleProcessDataLoaderIter` has no batch
# sampler. batch sampler in pytorch warps the sampler as its
# attributes.
self._dataloader.batch_sampler.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self._iterator = iter(self._dataloader)
data = next(self._iterator)
return data
@LOOPS.register_module()
class IterBasedTrainLoop(BaseLoop):
"""Loop for iter-based training.
Args:
runner (Runner): A reference of runner.
dataloader (Dataloader or dict): A dataloader object or a dict to
build a dataloader.
max_iters (int): Total training iterations.
val_begin (int): The iteration that begins validating.
Defaults to 1.
val_interval (int): Validation interval. Defaults to 1000.
dynamic_intervals (List[Tuple[int, int]], optional): The
first element in the tuple is a milestone and the second
element is a interval. The interval is used after the
corresponding milestone. Defaults to None.
"""
def __init__(
self,
runner,
dataloader: Union[DataLoader, Dict],
max_iters: int,
val_begin: int = 1,
val_interval: int = 1000,
dynamic_intervals: Optional[List[Tuple[int, int]]] = None) -> None:
super().__init__(runner, dataloader)
self._max_iters = int(max_iters)
assert self._max_iters == max_iters, \
f'`max_iters` should be a integer number, but get {max_iters}'
self._max_epochs = 1 # for compatibility with EpochBasedTrainLoop
self._epoch = 0
self._iter = 0
self.val_begin = val_begin
self.val_interval = val_interval
# This attribute will be updated by `EarlyStoppingHook`
# when it is enabled.
self.stop_training = False
if hasattr(self.dataloader.dataset, 'metainfo'):
self.runner.visualizer.dataset_meta = \
self.dataloader.dataset.metainfo
else:
print_log(
f'Dataset {self.dataloader.dataset.__class__.__name__} has no '
'metainfo. ``dataset_meta`` in visualizer will be '
'None.',
logger='current',
level=logging.WARNING)
# get the iterator of the dataloader
self.dataloader_iterator = _InfiniteDataloaderIterator(self.dataloader)
self.dynamic_milestones, self.dynamic_intervals = \
calc_dynamic_intervals(
self.val_interval, dynamic_intervals)
@property
def max_epochs(self):
"""int: Total epochs to train model."""
return self._max_epochs
@property
def max_iters(self):
"""int: Total iterations to train model."""
return self._max_iters
@property
def epoch(self):
"""int: Current epoch."""
return self._epoch
@property
def iter(self):
"""int: Current iteration."""
return self._iter
def run(self) -> None:
"""Launch training."""
self.runner.call_hook('before_train')
# In iteration-based training loop, we treat the whole training process
# as a big epoch and execute the corresponding hook.
self.runner.call_hook('before_train_epoch')
while self._iter < self._max_iters and not self.stop_training:
self.runner.model.train()
data_batch = next(self.dataloader_iterator)
self.run_iter(data_batch)
self._decide_current_val_interval()
if (self.runner.val_loop is not None
and self._iter >= self.val_begin
and self._iter % self.val_interval == 0):
self.runner.val_loop.run()
self.runner.call_hook('after_train_epoch')
self.runner.call_hook('after_train')
return self.runner.model
def run_iter(self, data_batch: Sequence[dict]) -> None:
"""Iterate one mini-batch.
Args:
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
self.runner.call_hook(
'before_train_iter', batch_idx=self._iter, data_batch=data_batch)
# Enable gradient accumulation mode and avoid unnecessary gradient
# synchronization during gradient accumulation process.
# outputs should be a dict of loss.
outputs = self.runner.model.train_step(
data_batch, optim_wrapper=self.runner.optim_wrapper)
self.runner.call_hook(
'after_train_iter',
batch_idx=self._iter,
data_batch=data_batch,
outputs=outputs)
self._iter += 1
def _decide_current_val_interval(self) -> None:
"""Dynamically modify the ``val_interval``."""
step = bisect.bisect(self.dynamic_milestones, (self._iter + 1))
self.val_interval = self.dynamic_intervals[step - 1]
@LOOPS.register_module()
class ValLoop(BaseLoop):
"""Loop for validation.
Args:
runner (Runner): A reference of runner.
dataloader (Dataloader or dict): A dataloader object or a dict to
build a dataloader.
evaluator (Evaluator or dict or list): Used for computing metrics.
fp16 (bool): Whether to enable fp16 validation. Defaults to
False.
"""
def __init__(self,
runner,
dataloader: Union[DataLoader, Dict],
evaluator: Union[Evaluator, Dict, List],
fp16: bool = False) -> None:
super().__init__(runner, dataloader)
if isinstance(evaluator, (dict, list)):
self.evaluator = runner.build_evaluator(evaluator) # type: ignore
else:
assert isinstance(evaluator, Evaluator), (
'evaluator must be one of dict, list or Evaluator instance, '
f'but got {type(evaluator)}.')
self.evaluator = evaluator # type: ignore
if hasattr(self.dataloader.dataset, 'metainfo'):
self.evaluator.dataset_meta = self.dataloader.dataset.metainfo
self.runner.visualizer.dataset_meta = \
self.dataloader.dataset.metainfo
else:
print_log(
f'Dataset {self.dataloader.dataset.__class__.__name__} has no '
'metainfo. ``dataset_meta`` in evaluator, metric and '
'visualizer will be None.',
logger='current',
level=logging.WARNING)
self.fp16 = fp16
def run(self) -> dict:
"""Launch validation."""
self.runner.call_hook('before_val')
self.runner.call_hook('before_val_epoch')
self.runner.model.eval()
for idx, data_batch in enumerate(self.dataloader):
self.run_iter(idx, data_batch)
# compute metrics
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
self.runner.call_hook('after_val_epoch', metrics=metrics)
self.runner.call_hook('after_val')
return metrics
@torch.no_grad()
def run_iter(self, idx, data_batch: Sequence[dict]):
"""Iterate one mini-batch.
Args:
data_batch (Sequence[dict]): Batch of data
from dataloader.
"""
self.runner.call_hook(
'before_val_iter', batch_idx=idx, data_batch=data_batch)
# outputs should be sequence of BaseDataElement
with autocast(enabled=self.fp16):
outputs = self.runner.model.val_step(data_batch)
self.evaluator.process(data_samples=outputs, data_batch=data_batch)
self.runner.call_hook(
'after_val_iter',
batch_idx=idx,
data_batch=data_batch,
outputs=outputs)
@LOOPS.register_module()
class TestLoop(BaseLoop):
"""Loop for test.
Args:
runner (Runner): A reference of runner.
dataloader (Dataloader or dict): A dataloader object or a dict to
build a dataloader.
evaluator (Evaluator or dict or list): Used for computing metrics.
fp16 (bool): Whether to enable fp16 testing. Defaults to
False.
"""
def __init__(self,
runner,
dataloader: Union[DataLoader, Dict],
evaluator: Union[Evaluator, Dict, List],
fp16: bool = False):
super().__init__(runner, dataloader)
if isinstance(evaluator, dict) or isinstance(evaluator, list):
self.evaluator = runner.build_evaluator(evaluator) # type: ignore
else:
self.evaluator = evaluator # type: ignore
if hasattr(self.dataloader.dataset, 'metainfo'):
self.evaluator.dataset_meta = self.dataloader.dataset.metainfo
self.runner.visualizer.dataset_meta = \
self.dataloader.dataset.metainfo
else:
print_log(
f'Dataset {self.dataloader.dataset.__class__.__name__} has no '
'metainfo. ``dataset_meta`` in evaluator, metric and '
'visualizer will be None.',
logger='current',
level=logging.WARNING)
self.fp16 = fp16
def run(self) -> dict:
"""Launch test."""
self.runner.call_hook('before_test')
self.runner.call_hook('before_test_epoch')
self.runner.model.eval()
for idx, data_batch in enumerate(self.dataloader):
self.run_iter(idx, data_batch)
# compute metrics
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
self.runner.call_hook('after_test_epoch', metrics=metrics)
self.runner.call_hook('after_test')
return metrics
@torch.no_grad()
def run_iter(self, idx, data_batch: Sequence[dict]) -> None:
"""Iterate one mini-batch.
Args:
data_batch (Sequence[dict]): Batch of data from dataloader.
"""
self.runner.call_hook(
'before_test_iter', batch_idx=idx, data_batch=data_batch)
# predictions should be sequence of BaseDataElement
with autocast(enabled=self.fp16):
outputs = self.runner.model.test_step(data_batch)
self.evaluator.process(data_samples=outputs, data_batch=data_batch)
self.runner.call_hook(
'after_test_iter',
batch_idx=idx,
data_batch=data_batch,
outputs=outputs)
|