File size: 67,727 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import logging
import os.path as osp
import pickle
import warnings
from functools import partial
from typing import Callable, Dict, List, Optional, Union

import torch.nn as nn
from torch.utils.data import DataLoader

import mmengine
from mmengine._strategy import BaseStrategy
from mmengine.config import Config, ConfigDict
from mmengine.dataset import worker_init_fn as default_worker_init_fn
from mmengine.dist import get_rank, infer_launcher, master_only
from mmengine.evaluator import Evaluator
from mmengine.fileio import FileClient, join_path
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, print_log
from mmengine.optim import OptimWrapper, OptimWrapperDict, _ParamScheduler
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS,
                               HOOKS, LOG_PROCESSORS, LOOPS, RUNNERS,
                               STRATEGIES, VISUALIZERS, DefaultScope)
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
from mmengine.visualization import Visualizer
from .base_loop import BaseLoop
from .checkpoint import find_latest_checkpoint
from .log_processor import LogProcessor
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from .priority import Priority, get_priority

ConfigType = Union[Dict, Config, ConfigDict]
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str,
                                                       List[_ParamScheduler]]]
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict]


@RUNNERS.register_module()
class FlexibleRunner:
    """A training helper for PyTorch.

    Runner object can be built from config by ``runner = Runner.from_cfg(cfg)``
    where the ``cfg`` usually contains training, validation, and test-related
    configurations to build corresponding components. We usually use the
    same config to launch training, testing, and validation tasks. However,
    only some of these components are necessary at the same time, e.g.,
    testing a model does not need training or validation-related components.

    To avoid repeatedly modifying config, the construction of ``Runner`` adopts
    lazy initialization to only initialize components when they are going to be
    used. Therefore, the model is always initialized at the beginning, and
    training, validation, and, testing related components are only initialized
    when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``,
    respectively.

    Warning:
        This is an experimental feature, and its interface is subject to
        change.

    Args:
        model (:obj:`torch.nn.Module` or dict): The model to be run. It can be
            a dict used for build a model.

    Kwargs:
        work_dir (str, optional): The working directory to save checkpoints.
            The logs will be saved in the subdirectory of `work_dir` named
            :attr:`timestamp`. Defaults to 'work_dir'.
        experiment_name (str, optional): Name of current experiment. If not
            specified, timestamp will be used as ``experiment_name``.
            Defaults to None.
        train_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping training steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
        optim_wrapper (OptimWrapper or dict, optional):
            Computing gradient of model parameters. If specified,
            :attr:`train_dataloader` should also be specified. If automatic
            mixed precision or gradient accmulation
            training is required. The type of ``optim_wrapper`` should be
            AmpOptimizerWrapper. See :meth:`build_optim_wrapper` for
            examples. Defaults to None.
        param_scheduler (_ParamScheduler or dict or list, optional):
            Parameter scheduler for updating optimizer parameters. If
            specified, :attr:`optimizer` should also be specified.
            Defaults to None.
            See :meth:`build_param_scheduler` for examples.
        train_cfg (dict, optional): A dict to build a training loop. If it does
            not provide "type" key, it should contain "by_epoch" to decide
            which type of training loop :class:`EpochBasedTrainLoop` or
            :class:`IterBasedTrainLoop` should be used. If ``train_cfg``
            specified, :attr:`train_dataloader` should also be specified.
            Defaults to None. See :meth:`build_train_loop` for more details.
        val_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping validation steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
        val_evaluator (Evaluator or dict or list, optional): A evaluator object
            used for computing metrics for validation. It can be a dict or a
            list of dict to build a evaluator. If specified,
            :attr:`val_dataloader` should also be specified. Defaults to None.
        val_cfg (dict, optional): A dict to build a validation loop. If it does
            not provide "type" key, :class:`ValLoop` will be used by default.
            If ``val_cfg`` specified, :attr:`val_dataloader` should also be
            specified. If ``ValLoop`` is built with `fp16=True``,
            ``runner.val()`` will be performed under fp16 precision.
        test_dataloader (Dataloader or dict, optional): A dataloader object or
            a dict to build a dataloader. If ``None`` is given, it means
            skipping test steps. Defaults to None.
            See :meth:`build_dataloader` for more details.
            Defaults to None. See :meth:`build_val_loop` for more details.
        test_evaluator (Evaluator or dict or list, optional): A evaluator
            object used for computing metrics for test steps. It can be a dict
            or a list of dict to build a evaluator. If specified,
            :attr:`test_dataloader` should also be specified. Defaults to None.
        test_cfg (dict, optional): A dict to build a test loop. If it does
            not provide "type" key, :class:`TestLoop` will be used by default.
            If ``test_cfg`` specified, :attr:`test_dataloader` should also be
            specified. If ``ValLoop`` is built with `fp16=True``,
            ``runner.val()`` will be performed under fp16 precision.
            Defaults to None. See :meth:`build_test_loop` for more details.
        strategy (BaseStrategy or dict, optional): A strategy object or a dict
            to build a strategy. Defaults to None. If not specified, the
            strategy will be inferred automatically.
        auto_scale_lr (dict, Optional): Config to scale the learning rate
            automatically. It includes ``base_batch_size`` and ``enable``.
            ``base_batch_size`` is the batch size that the optimizer lr is
            based on. ``enable`` is the switch to turn on and off the feature.
        default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to
            execute default actions like updating model parameters and saving
            checkpoints. Default hooks are ``OptimizerHook``,
            ``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and
            ``CheckpointHook``. Defaults to None.
            See :meth:`register_default_hooks` for more details.
        custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
            custom actions like visualizing images processed by pipeline.
            Defaults to None.
        data_preprocessor (dict, optional): The pre-process config of
            :class:`BaseDataPreprocessor`. If the ``model`` argument is a dict
            and doesn't contain the key ``data_preprocessor``, set the argument
            as the ``data_preprocessor`` of the ``model`` dict.
            Defaults to None.
        load_from (str, optional): The checkpoint file to load from.
            Defaults to None.
        resume (bool): Whether to resume training. Defaults to False. If
            ``resume`` is True and ``load_from`` is None, automatically to
            find latest checkpoint from ``work_dir``. If not found, resuming
            does nothing.
        launcher (str, optional): Way to launcher multi-process. Supported
            launchers are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is
            provided, non-distributed environment will be launched.
            If launcher is None, the launcher will be inferred according some
            specified environments. Defaults to None.
        env_cfg (dict): A dict used for setting environment. Defaults to
            dict(dist_cfg=dict(backend='nccl')).
        log_processor (dict, optional): A processor to format logs. Defaults to
            None.
        log_level (int or str): The log level of MMLogger handlers.
            Defaults to 'INFO'.
        visualizer (Visualizer or dict, optional): A Visualizer object or a
            dict build Visualizer object. Defaults to None. If not
            specified, default config will be used.
        default_scope (str): Used to reset registries location.
            Defaults to "mmengine".
        randomness (dict): Some settings to make the experiment as reproducible
            as possible like seed and deterministic.
            Defaults to ``dict(seed=None)``. If seed is None, a random number
            will be generated and it will be broadcasted to all other processes
            if in distributed environment. If ``cudnn_benchmark`` is
            ``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in
            ``randomness``, the value of ``torch.backends.cudnn.benchmark``
            will be ``False`` finally.
        compile (bool or dict, optional): Whether to enable ``torch.compile``.
            Defaults to False.
        cfg (dict or Configdict or :obj:`Config`, optional): Full config.
            Defaults to None.

    Note:
        Since PyTorch 2.0.0, you can enable ``torch.compile`` by passing in
        `compile = True`. If you want to control compile options, you
        can pass a dict, e.g. ``cfg.compile = dict(backend='eager')``.
        Refer to `PyTorch API Documentation <https://pytorch.org/docs/
        master/generated/torch.compile.html#torch.compile>`_ for more valid
        options.

    Examples:
        >>> from mmengine.runner import Runner
        >>> cfg = dict(
        >>>     model=dict(type='ToyModel'),
        >>>     work_dir='path/of/work_dir',
        >>>     train_dataloader=dict(
        >>>     dataset=dict(type='ToyDataset'),
        >>>     sampler=dict(type='DefaultSampler', shuffle=True),
        >>>     batch_size=1,
        >>>     num_workers=0),
        >>>     val_dataloader=dict(
        >>>         dataset=dict(type='ToyDataset'),
        >>>         sampler=dict(type='DefaultSampler', shuffle=False),
        >>>        batch_size=1,
        >>>        num_workers=0),
        >>>     test_dataloader=dict(
        >>>         dataset=dict(type='ToyDataset'),
        >>>         sampler=dict(type='DefaultSampler', shuffle=False),
        >>>         batch_size=1,
        >>>         num_workers=0),
        >>>     auto_scale_lr=dict(base_batch_size=16, enable=False),
        >>>     optim_wrapper=dict(type='OptimizerWrapper', optimizer=dict(
        >>>         type='SGD', lr=0.01)),
        >>>     param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
        >>>     val_evaluator=dict(type='ToyEvaluator'),
        >>>     test_evaluator=dict(type='ToyEvaluator'),
        >>>     train_cfg=dict(by_epoch=True, max_epochs=3, val_interval=1),
        >>>     val_cfg=dict(),
        >>>     test_cfg=dict(),
        >>>     custom_hooks=[],
        >>>     default_hooks=dict(
        >>>         timer=dict(type='IterTimerHook'),
        >>>         checkpoint=dict(type='CheckpointHook', interval=1),
        >>>         logger=dict(type='LoggerHook'),
        >>>         optimizer=dict(type='OptimizerHook', grad_clip=False),
        >>>         param_scheduler=dict(type='ParamSchedulerHook')),
        >>>     launcher='none',
        >>>     env_cfg=dict(dist_cfg=dict(backend='nccl')),
        >>>     log_processor=dict(window_size=20),
        >>>     visualizer=dict(type='Visualizer',
        >>>     vis_backends=[dict(type='LocalVisBackend',
        >>>                        save_dir='temp_dir')])
        >>>    )
        >>> runner = Runner.from_cfg(cfg)
        >>> runner.train()
        >>> runner.test()
    """
    cfg: Config
    _train_loop: Optional[Union[BaseLoop, Dict]]
    _val_loop: Optional[Union[BaseLoop, Dict]]
    _test_loop: Optional[Union[BaseLoop, Dict]]

    def __init__(
        self,
        model: Union[nn.Module, Dict],
        *,
        work_dir: str = 'work_dirs',
        experiment_name: Optional[str] = None,
        train_dataloader: Optional[Union[DataLoader, Dict]] = None,
        optim_wrapper: Optional[Union[OptimWrapper, Dict]] = None,
        param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None,
        train_cfg: Optional[Dict] = None,
        val_dataloader: Optional[Union[DataLoader, Dict]] = None,
        val_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
        val_cfg: Optional[Dict] = None,
        test_dataloader: Optional[Union[DataLoader, Dict]] = None,
        test_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
        test_cfg: Optional[Dict] = None,
        strategy: Optional[Union[BaseStrategy, Dict]] = None,
        auto_scale_lr: Optional[Dict] = None,
        default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
        custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
        data_preprocessor: Union[nn.Module, Dict, None] = None,
        load_from: Optional[str] = None,
        resume: Union[str, bool] = False,
        launcher: Optional[str] = None,
        env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')),
        log_processor: Optional[Dict] = None,
        log_level: str = 'INFO',
        visualizer: Optional[Union[Visualizer, Dict]] = None,
        default_scope: Optional[str] = 'mmengine',
        randomness: Dict = dict(seed=None),
        compile: Union[bool, Dict] = False,
        cfg: Optional[ConfigType] = None,
    ):
        if isinstance(model, dict) and data_preprocessor is not None:
            # Merge the data_preprocessor to model config.
            model.setdefault('data_preprocessor', data_preprocessor)
        self.model = model

        self._work_dir = osp.abspath(work_dir)
        mmengine.mkdir_or_exist(self._work_dir)

        # recursively copy the `cfg` because `self.cfg` will be modified
        # everywhere.
        if cfg is not None:
            if isinstance(cfg, Config):
                self.cfg = copy.deepcopy(cfg)
            elif isinstance(cfg, dict):
                self.cfg = Config(cfg)
        else:
            self.cfg = Config(dict())

        # lazy initialization
        training_related = [train_dataloader, train_cfg, optim_wrapper]
        if not (all(item is None for item in training_related)
                or all(item is not None for item in training_related)):
            raise ValueError(
                'train_dataloader, train_cfg, and optim_wrapper should be '
                'either all None or not None, but got '
                f'train_dataloader={train_dataloader}, '
                f'train_cfg={train_cfg}, '
                f'optim_wrapper={optim_wrapper}.')
        self._train_dataloader = train_dataloader
        self._train_loop = train_cfg

        self.optim_wrapper: Optional[Union[OptimWrapper, dict]]
        self.optim_wrapper = optim_wrapper

        self._auto_scale_lr = auto_scale_lr

        # If there is no need to adjust learning rate, momentum or other
        # parameters of optimizer, param_scheduler can be None
        if param_scheduler is not None and self.optim_wrapper is None:
            raise ValueError(
                'param_scheduler should be None when optim_wrapper is None, '
                f'but got {param_scheduler}')

        self.param_schedulers = param_scheduler

        val_related = [val_dataloader, val_cfg, val_evaluator]
        if not (all(item is None
                    for item in val_related) or all(item is not None
                                                    for item in val_related)):
            raise ValueError(
                'val_dataloader, val_cfg, and val_evaluator should be either '
                'all None or not None, but got '
                f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, '
                f'val_evaluator={val_evaluator}')
        self._val_dataloader = val_dataloader
        self._val_loop = val_cfg
        self._val_evaluator = val_evaluator

        test_related = [test_dataloader, test_cfg, test_evaluator]
        if not (all(item is None for item in test_related)
                or all(item is not None for item in test_related)):
            raise ValueError(
                'test_dataloader, test_cfg, and test_evaluator should be '
                'either all None or not None, but got '
                f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, '
                f'test_evaluator={test_evaluator}')
        self._test_dataloader = test_dataloader
        self._test_loop = test_cfg
        self._test_evaluator = test_evaluator

        if not isinstance(compile, bool) and not isinstance(compile, dict):
            raise TypeError(
                f'compile should be a bool or dict, but got {type(compile)}')
        self._compile = compile

        if isinstance(resume, str) and load_from is not None:
            raise ValueError('If resume is a str, load_from should be None.')
        self._load_from = load_from
        self._resume = resume
        # flag to mark whether checkpoint has been loaded or resumed
        self._has_loaded = False

        if launcher is None:
            launcher = infer_launcher()

        if experiment_name is None and self.cfg.filename is not None:
            experiment_name = osp.splitext(osp.basename(self.cfg.filename))[0]

        self._randomness_cfg = randomness
        self.strategy = self.build_strategy(
            strategy,
            launcher=launcher,
            randomness=randomness,
            env_cfg=env_cfg,
            experiment_name=experiment_name,
            log_level=log_level,
        )

        # Used to reset registries location. See :meth:`Registry.build` for
        # more details.
        if default_scope is not None:
            default_scope = DefaultScope.get_instance(  # type: ignore
                self.experiment_name,
                scope_name=default_scope)
        self.default_scope = default_scope
        # Build log processor to format message.
        log_processor = dict() if log_processor is None else log_processor
        self.log_processor = self.build_log_processor(log_processor)

        # Collect and log environment information.
        self._log_env()

        # Build `message_hub` for communication among components.
        # `message_hub` can store log scalars (loss, learning rate) and
        # runtime information (iter and epoch). Those components that do not
        # have access to the runner can get iteration or epoch information
        # from `message_hub`. For example, models can get the latest created
        # `message_hub` by
        # `self.message_hub=MessageHub.get_current_instance()` and then get
        # current epoch by `cur_epoch = self.message_hub.get_info('epoch')`.
        # See `MessageHub` and `ManagerMixin` for more details.
        self.message_hub = self.build_message_hub()
        # visualizer used for writing log or visualizing all kinds of data
        self.visualizer = self.build_visualizer(visualizer)
        if self.cfg:
            self.visualizer.add_config(self.cfg)

        self._hooks: List[Hook] = []
        # register hooks to `self._hooks`
        self.register_hooks(default_hooks, custom_hooks)
        # log hooks information
        self.logger.info(f'Hooks will be executed in the following '
                         f'order:\n{self.get_hooks_info()}')

        # dump `cfg` to `work_dir`
        self.dump_config()

    @classmethod
    def from_cfg(cls, cfg: ConfigType) -> 'FlexibleRunner':
        """Build a runner from config.

        Args:
            cfg (ConfigType): A config used for building runner. Keys of
                ``cfg`` can see :meth:`__init__`.

        Returns:
            Runner: A runner build from ``cfg``.
        """
        cfg = copy.deepcopy(cfg)
        runner = cls(
            model=cfg['model'],
            work_dir=cfg.get('work_dir', 'work_dirs'),
            experiment_name=cfg.get('experiment_name'),
            train_dataloader=cfg.get('train_dataloader'),
            optim_wrapper=cfg.get('optim_wrapper'),
            param_scheduler=cfg.get('param_scheduler'),
            train_cfg=cfg.get('train_cfg'),
            val_dataloader=cfg.get('val_dataloader'),
            val_evaluator=cfg.get('val_evaluator'),
            val_cfg=cfg.get('val_cfg'),
            test_dataloader=cfg.get('test_dataloader'),
            test_evaluator=cfg.get('test_evaluator'),
            test_cfg=cfg.get('test_cfg'),
            strategy=cfg.get('strategy'),
            auto_scale_lr=cfg.get('auto_scale_lr'),
            default_hooks=cfg.get('default_hooks'),
            custom_hooks=cfg.get('custom_hooks'),
            data_preprocessor=cfg.get('data_preprocessor'),
            load_from=cfg.get('load_from'),
            resume=cfg.get('resume', False),
            launcher=cfg.get('launcher'),
            env_cfg=cfg.get('env_cfg'),  # type: ignore
            log_processor=cfg.get('log_processor'),
            log_level=cfg.get('log_level', 'INFO'),
            visualizer=cfg.get('visualizer'),
            default_scope=cfg.get('default_scope', 'mmengine'),
            randomness=cfg.get('randomness', dict(seed=None)),
            cfg=cfg,
        )

        return runner

    @property
    def experiment_name(self):
        """str: Name of experiment."""
        return self.strategy.experiment_name

    @property
    def model_name(self):
        """str: Name of the model, usually the module class name."""
        return self._model_name

    @property
    def work_dir(self):
        """str: The working directory to save checkpoints and logs."""
        return self._work_dir

    @property
    def log_dir(self):
        return self.strategy.log_dir

    @property
    def logger(self):
        return self.strategy.logger

    @property
    def max_epochs(self):
        """int: Total epochs to train model."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.max_epochs
        else:
            return 0

    @property
    def max_iters(self):
        """int: Total iterations to train model."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.max_iters
        else:
            return 0

    @property
    def epoch(self):
        """int: Current epoch."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.epoch
        else:
            return 0

    @property
    def iter(self):
        """int: Current iteration."""
        if isinstance(self.train_loop, BaseLoop):
            return self.train_loop.iter
        else:
            return 0

    @property
    def distributed(self):
        """bool: Whether current environment is distributed."""
        return self.strategy.distributed

    @property
    def rank(self):
        """int: Rank of current process."""
        return self.strategy.rank

    @property
    def world_size(self):
        """int: Number of processes participating in the job."""
        return self.strategy.world_size

    @property
    def deterministic(self):
        """int: Whether cudnn to select deterministic algorithms."""
        return self._deterministic

    @property
    def seed(self):
        """int: A number to set random modules."""
        return self.strategy.seed

    @property
    def timestamp(self):
        """str: Timestamp when creating experiment."""
        return self.strategy.timestamp

    @property
    def hooks(self):
        """list[:obj:`Hook`]: A list of registered hooks."""
        return self._hooks

    @property
    def train_loop(self):
        """:obj:`BaseLoop`: A loop to run training."""
        if isinstance(self._train_loop, BaseLoop) or self._train_loop is None:
            return self._train_loop
        else:
            self._train_loop = self.build_train_loop(self._train_loop)
            return self._train_loop

    @property
    def val_loop(self):
        """:obj:`BaseLoop`: A loop to run validation."""
        if isinstance(self._val_loop, BaseLoop) or self._val_loop is None:
            return self._val_loop
        else:
            self._val_loop = self.build_val_loop(self._val_loop)
            return self._val_loop

    @property
    def test_loop(self):
        """:obj:`BaseLoop`: A loop to run testing."""
        if isinstance(self._test_loop, BaseLoop) or self._test_loop is None:
            return self._test_loop
        else:
            self._test_loop = self.build_test_loop(self._test_loop)
            return self._test_loop

    @property
    def train_dataloader(self):
        """The data loader for training."""
        return self.train_loop.dataloader

    @property
    def val_dataloader(self):
        """The data loader for validation."""
        return self.val_loop.dataloader

    @property
    def test_dataloader(self):
        """The data loader for testing."""
        return self.test_loop.dataloader

    @property
    def val_evaluator(self):
        """:obj:`Evaluator`: An evaluator for validation."""
        return self.val_loop.evaluator

    @property
    def test_evaluator(self):
        """:obj:`Evaluator`: An evaluator for testing."""
        return self.test_loop.evaluator

    @property
    def val_interval(self):
        """int: Interval to run validation during training."""
        return self.train_loop.val_interval

    @property
    def val_begin(self):
        """int: The epoch/iteration to start running validation during
        training."""
        return self.train_loop.val_begin

    def build_strategy(
        self,
        strategy: Optional[Union[BaseStrategy, Dict]] = None,
        launcher: str = 'none',
        randomness: Optional[dict] = None,
        env_cfg: dict = dict(dist_cfg=dict(backend='nccl')),
        experiment_name: Optional[str] = None,
        log_level: Optional[str] = None,
    ) -> BaseStrategy:
        """Build a strategy.

        Args:
            strategy (BaseStrategy, optional): A strategy object or dict to
                build the strategy. Defaults to None.

        Returns:
            BaseStrategy: A strategy object.
        """
        if isinstance(strategy, BaseStrategy):
            strategy_obj = strategy
        else:
            if launcher == 'none':
                if strategy is None:
                    strategy = dict(type='SingleDeviceStrategy')
            else:
                if strategy is None:
                    strategy = dict(type='DDPStrategy')

            assert isinstance(strategy, dict)

            # train_micro_batch_size_per_gpu is required by DeepSpeed
            if isinstance(strategy['type'], str):
                strategy_name = strategy['type']
            else:
                strategy_name = strategy['type'].__name__
            if strategy_name == 'DeepSpeedStrategy':
                if self._train_dataloader is None:
                    strategy['train_micro_batch_size_per_gpu'] = 1
                else:
                    strategy['train_micro_batch_size_per_gpu'] = \
                        _get_batch_size(self._train_dataloader)

            ## for FSDPStrategy, we need to set micro batch size per gpu
            if strategy_name == 'FSDPStrategy':
                if self._train_dataloader is None:
                    strategy['train_micro_batch_size_per_gpu'] = 1
                else:
                    strategy['train_micro_batch_size_per_gpu'] = \
                        _get_batch_size(self._train_dataloader)

            strategy.setdefault('work_dir', self._work_dir)
            strategy.setdefault('experiment_name', experiment_name)
            strategy.setdefault('auto_scale_lr', self._auto_scale_lr)

            env_kwargs = dict(
                launcher=launcher,
                randomness=randomness,
                **env_cfg,
            )
            strategy.setdefault('env_kwargs', env_kwargs)

            log_kwargs = dict(log_level=log_level)
            strategy.setdefault('log_kwargs', log_kwargs)

            strategy_obj = STRATEGIES.build(strategy)

        return strategy_obj

    def build_message_hub(
        self,
        message_hub: Optional[Dict] = None,
    ) -> MessageHub:
        """Build a global asscessable MessageHub.

        Args:
            message_hub (dict, optional): A dict to build MessageHub object.
                If not specified, default config will be used to build
                MessageHub object. Defaults to None.

        Returns:
            MessageHub: A MessageHub object build from ``message_hub``.
        """
        if message_hub is None:
            message_hub = dict(name=self.experiment_name)
        elif isinstance(message_hub, dict):
            # ensure message_hub containing name key
            message_hub.setdefault('name', self.experiment_name)
        else:
            raise TypeError(
                f'message_hub should be dict or None, but got {message_hub}')

        return MessageHub.get_instance(**message_hub)

    def build_visualizer(
        self,
        visualizer: Optional[Union[Visualizer, Dict]] = None,
    ) -> Visualizer:
        """Build a global asscessable Visualizer.

        Args:
            visualizer (Visualizer or dict, optional): A Visualizer object
                or a dict to build Visualizer object. If ``visualizer`` is a
                Visualizer object, just returns itself. If not specified,
                default config will be used to build Visualizer object.
                Defaults to None.

        Returns:
            Visualizer: A Visualizer object build from ``visualizer``.
        """
        if visualizer is None:
            visualizer = dict(
                name=self.experiment_name,
                vis_backends=[dict(type='LocalVisBackend')],
                save_dir=self.log_dir)
            return Visualizer.get_instance(**visualizer)

        if isinstance(visualizer, Visualizer):
            return visualizer

        if isinstance(visualizer, dict):
            # ensure visualizer containing name key
            visualizer.setdefault('name', self.experiment_name)
            visualizer.setdefault('save_dir', self.log_dir)
            return VISUALIZERS.build(visualizer)
        else:
            raise TypeError(
                'visualizer should be Visualizer object, a dict or None, '
                f'but got {visualizer}')

    def build_evaluator(
        self,
        evaluator: Union[Dict, List, Evaluator],
    ) -> Evaluator:
        """Build evaluator.

        Examples of ``evaluator``::

            # evaluator could be a built Evaluator instance
            evaluator = Evaluator(metrics=[ToyMetric()])

            # evaluator can also be a list of dict
            evaluator = [
                dict(type='ToyMetric1'),
                dict(type='ToyEvaluator2')
            ]

            # evaluator can also be a list of built metric
            evaluator = [ToyMetric1(), ToyMetric2()]

            # evaluator can also be a dict with key metrics
            evaluator = dict(metrics=ToyMetric())
            # metric is a list
            evaluator = dict(metrics=[ToyMetric()])

        Args:
            evaluator (Evaluator or dict or list): An Evaluator object or a
                config dict or list of config dict used to build an Evaluator.

        Returns:
            Evaluator: Evaluator build from ``evaluator``.
        """
        if isinstance(evaluator, Evaluator):
            return evaluator
        elif isinstance(evaluator, dict):
            # if `metrics` in dict keys, it means to build customized evalutor
            if 'metrics' in evaluator:
                evaluator.setdefault('type', 'Evaluator')
                return EVALUATOR.build(evaluator)
            # otherwise, default evalutor will be built
            else:
                return Evaluator(evaluator)  # type: ignore
        elif isinstance(evaluator, list):
            # use the default `Evaluator`
            return Evaluator(evaluator)  # type: ignore
        else:
            raise TypeError(
                'evaluator should be one of dict, list of dict, and Evaluator'
                f', but got {evaluator}')

    @staticmethod
    def build_dataloader(
        dataloader: Union[DataLoader, Dict],
        seed: Optional[int] = None,
        diff_rank_seed: bool = False,
    ) -> DataLoader:
        """Build dataloader.

        The method builds three components:

        - Dataset
        - Sampler
        - Dataloader

        An example of ``dataloader``::

            dataloader = dict(
                dataset=dict(type='ToyDataset'),
                sampler=dict(type='DefaultSampler', shuffle=True),
                batch_size=1,
                num_workers=9
            )

        Args:
            dataloader (DataLoader or dict): A Dataloader object or a dict to
                build Dataloader object. If ``dataloader`` is a Dataloader
                object, just returns itself.
            seed (int, optional): Random seed. Defaults to None.
            diff_rank_seed (bool): Whether or not set different seeds to
                different ranks. If True, the seed passed to sampler is set
                to None, in order to synchronize the seeds used in samplers
                across different ranks. Defaults to False.

        Returns:
            Dataloader: DataLoader build from ``dataloader_cfg``.
        """
        if isinstance(dataloader, DataLoader):
            return dataloader

        dataloader_cfg = copy.deepcopy(dataloader)

        # build dataset
        dataset_cfg = dataloader_cfg.pop('dataset')
        if isinstance(dataset_cfg, dict):
            dataset = DATASETS.build(dataset_cfg)
            if hasattr(dataset, 'full_init'):
                dataset.full_init()
        else:
            # fallback to raise error in dataloader
            # if `dataset_cfg` is not a valid type
            dataset = dataset_cfg

        # build sampler
        sampler_cfg = dataloader_cfg.pop('sampler')
        if isinstance(sampler_cfg, dict):
            sampler_seed = None if diff_rank_seed else seed
            sampler = DATA_SAMPLERS.build(
                sampler_cfg,
                default_args=dict(dataset=dataset, seed=sampler_seed))
        else:
            # fallback to raise error in dataloader
            # if `sampler_cfg` is not a valid type
            sampler = sampler_cfg

        # build batch sampler
        batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None)
        if batch_sampler_cfg is None:
            batch_sampler = None
        elif isinstance(batch_sampler_cfg, dict):
            batch_sampler = DATA_SAMPLERS.build(
                batch_sampler_cfg,
                default_args=dict(
                    sampler=sampler,
                    batch_size=dataloader_cfg.pop('batch_size')))
        else:
            # fallback to raise error in dataloader
            # if `batch_sampler_cfg` is not a valid type
            batch_sampler = batch_sampler_cfg

        # build dataloader
        init_fn: Optional[partial]
        if 'worker_init_fn' in dataloader_cfg:
            worker_init_fn_cfg = dataloader_cfg.pop('worker_init_fn')
            worker_init_fn_type = worker_init_fn_cfg.pop('type')
            worker_init_fn = FUNCTIONS.get(worker_init_fn_type)
            assert callable(worker_init_fn)
            init_fn = partial(worker_init_fn,
                              **worker_init_fn_cfg)  # type: ignore
        else:
            if seed is not None:
                disable_subprocess_warning = dataloader_cfg.pop(
                    'disable_subprocess_warning', False)
                assert isinstance(disable_subprocess_warning, bool), (
                    'disable_subprocess_warning should be a bool, but got '
                    f'{type(disable_subprocess_warning)}')
                init_fn = partial(
                    default_worker_init_fn,
                    num_workers=dataloader_cfg.get('num_workers'),
                    rank=get_rank(),
                    seed=seed,
                    disable_subprocess_warning=disable_subprocess_warning)
            else:
                init_fn = None

        # `persistent_workers` requires pytorch version >= 1.7
        if ('persistent_workers' in dataloader_cfg
                and digit_version(TORCH_VERSION) < digit_version('1.7.0')):
            print_log(
                '`persistent_workers` is only available when '
                'pytorch version >= 1.7',
                logger='current',
                level=logging.WARNING)
            dataloader_cfg.pop('persistent_workers')

        # The default behavior of `collat_fn` in dataloader is to
        # merge a list of samples to form a mini-batch of Tensor(s).
        # However, in mmengine, if `collate_fn` is not defined in
        # dataloader_cfg, `pseudo_collate` will only convert the list of
        # samples into a dict without stacking the batch tensor.
        collate_fn_cfg = dataloader_cfg.pop('collate_fn',
                                            dict(type='pseudo_collate'))
        if isinstance(collate_fn_cfg, dict):
            collate_fn_type = collate_fn_cfg.pop('type')
            if isinstance(collate_fn_type, str):
                collate_fn = FUNCTIONS.get(collate_fn_type)
            else:
                collate_fn = collate_fn_type
            collate_fn = partial(collate_fn, **collate_fn_cfg)  # type: ignore
        elif callable(collate_fn_cfg):
            collate_fn = collate_fn_cfg
        else:
            raise TypeError(
                'collate_fn should be a dict or callable object, but got '
                f'{collate_fn_cfg}')
        data_loader = DataLoader(
            dataset=dataset,
            sampler=sampler if batch_sampler is None else None,
            batch_sampler=batch_sampler,
            collate_fn=collate_fn,
            worker_init_fn=init_fn,
            **dataloader_cfg)
        return data_loader

    def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build training loop.

        Examples of ``loop``::

            # `EpochBasedTrainLoop` will be used
            loop = dict(by_epoch=True, max_epochs=3)

            # `IterBasedTrainLoop` will be used
            loop = dict(by_epoch=False, max_epochs=3)

            # custom training loop
            loop = dict(type='CustomTrainLoop', max_epochs=3)

        Args:
            loop (BaseLoop or dict): A training loop or a dict to build
                training loop. If ``loop`` is a training loop object, just
                returns itself.

        Returns:
            :obj:`BaseLoop`: Training loop object build from ``loop``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)

        if 'type' in loop_cfg and 'by_epoch' in loop_cfg:
            raise RuntimeError(
                'Only one of `type` or `by_epoch` can exist in `loop_cfg`.')

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self, dataloader=self._train_dataloader))
        else:
            by_epoch = loop_cfg.pop('by_epoch')
            if by_epoch:
                loop = EpochBasedTrainLoop(
                    **loop_cfg, runner=self, dataloader=self._train_dataloader)
            else:
                loop = IterBasedTrainLoop(
                    **loop_cfg, runner=self, dataloader=self._train_dataloader)
        return loop  # type: ignore

    def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build validation loop.

        Examples of ``loop``:

            # `ValLoop` will be used
            loop = dict()

            # custom validation loop
            loop = dict(type='CustomValLoop')

        Args:
            loop (BaseLoop or dict): A validation loop or a dict to build
                validation loop. If ``loop`` is a validation loop object, just
                returns itself.

        Returns:
            :obj:`BaseLoop`: Validation loop object build from ``loop``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'train_loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self,
                    dataloader=self._val_dataloader,
                    evaluator=self._val_evaluator))
        else:
            loop = ValLoop(
                **loop_cfg,
                runner=self,
                dataloader=self._val_dataloader,
                evaluator=self._val_evaluator)  # type: ignore

        return loop  # type: ignore

    def build_test_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
        """Build test loop.

        Examples of ``loop``::

            # `TestLoop` will be used
            loop = dict()

            # custom test loop
            loop = dict(type='CustomTestLoop')

        Args:
            loop (BaseLoop or dict): A test loop or a dict to build test loop.
                If ``loop`` is a test loop object, just returns itself.

        Returns:
            :obj:`BaseLoop`: Test loop object build from ``loop_cfg``.
        """
        if isinstance(loop, BaseLoop):
            return loop
        elif not isinstance(loop, dict):
            raise TypeError(
                f'train_loop should be a Loop object or dict, but got {loop}')

        loop_cfg = copy.deepcopy(loop)  # type: ignore

        if 'type' in loop_cfg:
            loop = LOOPS.build(
                loop_cfg,
                default_args=dict(
                    runner=self,
                    dataloader=self._test_dataloader,
                    evaluator=self._test_evaluator))
        else:
            loop = TestLoop(
                **loop_cfg,
                runner=self,
                dataloader=self._test_dataloader,
                evaluator=self._test_evaluator)  # type: ignore

        return loop  # type: ignore

    def build_log_processor(
        self,
        log_processor: Union[LogProcessor, Dict],
    ) -> LogProcessor:
        """Build test log_processor.

        Examples of ``log_processor``:

            # `LogProcessor` will be used
            log_processor = dict()

            # custom log_processor
            log_processor = dict(type='CustomLogProcessor')

        Args:
            log_processor (LogProcessor or dict): A log processor or a dict
            to build log processor. If ``log_processor`` is a log processor
            object, just returns itself.

        Returns:
            :obj:`LogProcessor`: Log processor object build from
            ``log_processor_cfg``.
        """
        if isinstance(log_processor, LogProcessor):
            return log_processor
        elif not isinstance(log_processor, dict):
            raise TypeError(
                'log processor should be a LogProcessor object or dict, but'
                f'got {log_processor}')

        log_processor_cfg = copy.deepcopy(log_processor)  # type: ignore

        if 'type' in log_processor_cfg:
            log_processor = LOG_PROCESSORS.build(log_processor_cfg)
        else:
            log_processor = LogProcessor(**log_processor_cfg)  # type: ignore

        return log_processor  # type: ignore

    def get_hooks_info(self) -> str:
        # Get hooks info in each stage
        stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages}
        for hook in self.hooks:
            try:
                priority = Priority(hook.priority).name  # type: ignore
            except ValueError:
                priority = hook.priority  # type: ignore
            classname = hook.__class__.__name__
            hook_info = f'({priority:<12}) {classname:<35}'
            for trigger_stage in hook.get_triggered_stages():
                stage_hook_map[trigger_stage].append(hook_info)

        stage_hook_infos = []
        for stage in Hook.stages:
            hook_infos = stage_hook_map[stage]
            if len(hook_infos) > 0:
                info = f'{stage}:\n'
                info += '\n'.join(hook_infos)
                info += '\n -------------------- '
                stage_hook_infos.append(info)
        return '\n'.join(stage_hook_infos)

    def load_or_resume(self):
        """load or resume checkpoint."""
        if self._has_loaded:
            return None

        if not self._resume and self._load_from is None:
            return None

        # decide to load from checkpoint or resume from checkpoint
        resume_from = None
        if isinstance(self._resume, str):
            resume_from = self._resume
        elif self._resume and self._load_from is None:
            # auto resume from the latest checkpoint
            resume_from = find_latest_checkpoint(self.work_dir)
            self.logger.info(
                f'Auto resumed from the latest checkpoint {resume_from}.')
        elif self._resume and self._load_from is not None:
            # resume from the specified checkpoint
            resume_from = self._load_from

        if resume_from is not None:
            self.resume(resume_from, map_location="cpu")
            self._has_loaded = True
        elif self._load_from is not None:
            self.load_checkpoint(self._load_from)
            self._has_loaded = True

    def train(self) -> nn.Module:
        """Launch training.

        Returns:
            nn.Module: The model after training.
        """
        if self._train_loop is None:
            raise RuntimeError(
                '`self._train_loop` should not be None when calling train '
                'method. Please provide `train_dataloader`, `train_cfg`, '
                '`optimizer` and `param_scheduler` arguments when '
                'initializing runner.')

        self._train_loop = self.build_train_loop(
            self._train_loop)  # type: ignore

        if self._val_loop is not None:
            self._val_loop = self.build_val_loop(
                self._val_loop)  # type: ignore

        compile: Union[dict, bool] = False
        if isinstance(self._compile, bool):
            if self._compile:
                compile = dict(target='train_step')
        else:
            compile = copy.copy(self._compile)
            compile.setdefault('target', 'train_step')

        dispatch_kwargs = dict(
            epoch_length=len(self.train_dataloader),
            max_epochs=self.max_epochs,
            max_iters=self.max_iters,
        )
        self.strategy.prepare(
            self.model,
            optim_wrapper=self.optim_wrapper,
            param_scheduler=self.param_schedulers,
            compile=compile,
            dispatch_kwargs=dispatch_kwargs,
        )

        self.model = self.strategy.model
        self.optim_wrapper = self.strategy.optim_wrapper  # type: ignore
        if self.param_schedulers is not None:
            self.param_schedulers = self.strategy.param_schedulers

        self.load_or_resume()

        # TODO: add a contextmanager to avoid calling `before_run` many times
        self.call_hook('before_run')

        model = self.train_loop.run()  # type: ignore
        self.call_hook('after_run')
        return model

    def val(self) -> dict:
        """Launch validation.

        Returns:
            dict: A dict of metrics on validation set.
        """
        if self._val_loop is None:
            raise RuntimeError(
                '`self._val_loop` should not be None when calling val method.'
                'Please provide `val_dataloader`, `val_cfg` and '
                '`val_evaluator` arguments when initializing runner.')

        self._val_loop = self.build_val_loop(self._val_loop)  # type: ignore

        dispatch_kwargs = dict(
            init_weights_for_test_or_val=self.cfg.get(
                'init_weights_for_test_or_val', True))
        self.strategy.prepare(self.model, dispatch_kwargs=dispatch_kwargs)
        self.model = self.strategy.model

        self.load_or_resume()

        self.call_hook('before_run')
        metrics = self.val_loop.run()  # type: ignore
        self.call_hook('after_run')

        return metrics

    def test(self) -> dict:
        """Launch test.

        Returns:
            dict: A dict of metrics on testing set.
        """
        if self._test_loop is None:
            raise RuntimeError(
                '`self._test_loop` should not be None when calling test '
                'method. Please provide `test_dataloader`, `test_cfg` and '
                '`test_evaluator` arguments when initializing runner.')

        self._test_loop = self.build_test_loop(self._test_loop)  # type: ignore
        dispatch_kwargs = dict(
            init_weights_for_test_or_val=self.cfg.get(
                'init_weights_for_test_or_val', True))
        self.strategy.prepare(self.model, dispatch_kwargs=dispatch_kwargs)
        self.model = self.strategy.model

        self.load_or_resume()

        self.call_hook('before_run')
        metrics = self.test_loop.run()  # type: ignore
        self.call_hook('after_run')

        return metrics

    def call_hook(self, fn_name: str, **kwargs) -> None:
        """Call all hooks.

        Args:
            fn_name (str): The function name in each hook to be called, such as
                "before_train_epoch".
            **kwargs: Keyword arguments passed to hook.
        """
        for hook in self._hooks:
            # support adding additional custom hook methods
            if hasattr(hook, fn_name):
                try:
                    getattr(hook, fn_name)(self, **kwargs)
                except TypeError as e:
                    raise TypeError(f'{e} in {hook}') from e

    def register_hook(
        self,
        hook: Union[Hook, Dict],
        priority: Optional[Union[str, int, Priority]] = None,
    ) -> None:
        """Register a hook into the hook list.

        The hook will be inserted into a priority queue, with the specified
        priority (See :class:`Priority` for details of priorities).
        For hooks with the same priority, they will be triggered in the same
        order as they are registered.

        Priority of hook will be decided with the following priority:

        - ``priority`` argument. If ``priority`` is given, it will be priority
          of hook.
        - If ``hook`` argument is a dict and ``priority`` in it, the priority
          will be the value of ``hook['priority']``.
        - If ``hook`` argument is a dict but ``priority`` not in it or ``hook``
          is an instance of ``hook``, the priority will be ``hook.priority``.

        Args:
            hook (:obj:`Hook` or dict): The hook to be registered.
            priority (int or str or :obj:`Priority`, optional): Hook priority.
                Lower value means higher priority.
        """
        if not isinstance(hook, (Hook, dict)):
            raise TypeError(
                f'hook should be an instance of Hook or dict, but got {hook}')

        _priority = None
        if isinstance(hook, dict):
            if 'priority' in hook:
                _priority = hook.pop('priority')

            hook_obj = HOOKS.build(hook)
        else:
            hook_obj = hook

        if priority is not None:
            hook_obj.priority = priority
        elif _priority is not None:
            hook_obj.priority = _priority

        inserted = False
        for i in range(len(self._hooks) - 1, -1, -1):
            if get_priority(hook_obj.priority) >= get_priority(
                    self._hooks[i].priority):
                self._hooks.insert(i + 1, hook_obj)
                inserted = True
                break
        if not inserted:
            self._hooks.insert(0, hook_obj)

    def register_default_hooks(
        self,
        hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
    ) -> None:
        """Register default hooks into hook list.

        ``hooks`` will be registered into runner to execute some default
        actions like updating model parameters or saving checkpoints.

        Default hooks and their priorities:

        +----------------------+-------------------------+
        | Hooks                | Priority                |
        +======================+=========================+
        | RuntimeInfoHook      | VERY_HIGH (10)          |
        +----------------------+-------------------------+
        | IterTimerHook        | NORMAL (50)             |
        +----------------------+-------------------------+
        | DistSamplerSeedHook  | NORMAL (50)             |
        +----------------------+-------------------------+
        | LoggerHook           | BELOW_NORMAL (60)       |
        +----------------------+-------------------------+
        | ParamSchedulerHook   | LOW (70)                |
        +----------------------+-------------------------+
        | CheckpointHook       | VERY_LOW (90)           |
        +----------------------+-------------------------+

        If ``hooks`` is None, above hooks will be registered by
        default::

            default_hooks = dict(
                runtime_info=dict(type='RuntimeInfoHook'),
                timer=dict(type='IterTimerHook'),
                sampler_seed=dict(type='DistSamplerSeedHook'),
                logger=dict(type='LoggerHook'),
                param_scheduler=dict(type='ParamSchedulerHook'),
                checkpoint=dict(type='CheckpointHook', interval=1),
            )

        If not None, ``hooks`` will be merged into ``default_hooks``.
        If there are None value in default_hooks, the corresponding item will
        be popped from ``default_hooks``::

            hooks = dict(timer=None)

        The final registered default hooks will be :obj:`RuntimeInfoHook`,
        :obj:`DistSamplerSeedHook`, :obj:`LoggerHook`,
        :obj:`ParamSchedulerHook` and :obj:`CheckpointHook`.

        Args:
            hooks (dict[str, Hook or dict], optional): Default hooks or configs
                to be registered.
        """
        default_hooks: dict = dict(
            runtime_info=dict(type='RuntimeInfoHook'),
            timer=dict(type='IterTimerHook'),
            sampler_seed=dict(type='DistSamplerSeedHook'),
            logger=dict(type='LoggerHook'),
            param_scheduler=dict(type='ParamSchedulerHook'),
            checkpoint=dict(type='CheckpointHook', interval=1),
        )
        if hooks is not None:
            for name, hook in hooks.items():
                if name in default_hooks and hook is None:
                    # remove hook from _default_hooks
                    default_hooks.pop(name)
                else:
                    assert hook is not None
                    default_hooks[name] = hook

        for hook in default_hooks.values():
            self.register_hook(hook)

    def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None:
        """Register custom hooks into hook list.

        Args:
            hooks (list[Hook | dict]): List of hooks or configs to be
                registered.
        """
        for hook in hooks:
            self.register_hook(hook)

    def register_hooks(
        self,
        default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
        custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
    ) -> None:
        """Register default hooks and custom hooks into hook list.

        Args:
            default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks
                to execute default actions like updating model parameters and
                saving checkpoints.  Defaults to None.
            custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
                custom actions like visualizing images processed by pipeline.
                Defaults to None.
        """
        self.register_default_hooks(default_hooks)

        if custom_hooks is not None:
            self.register_custom_hooks(custom_hooks)

    def resume(
        self,
        filename: str,
        resume_optimizer: bool = True,
        resume_param_scheduler: bool = True,
        map_location: Union[str, Callable] = 'default',
    ) -> None:
        """Resume model from checkpoint.

        Args:
            filename (str): Accept local filepath, URL, ``torchvision://xxx``,
                ``open-mmlab://xxx``.
            resume_optimizer (bool): Whether to resume optimizer state.
                Defaults to True.
            resume_param_scheduler (bool): Whether to resume param scheduler
                state. Defaults to True.
            map_location (str or callable):A string or a callable function to
                specifying how to remap storage locations.
                Defaults to 'default'.
        """

        def callback(checkpoint):
            self.call_hook('after_load_checkpoint', checkpoint=checkpoint)

        checkpoint = self.strategy.resume(
            filename,
            resume_optimizer=resume_optimizer,
            resume_param_scheduler=resume_param_scheduler,
            map_location=map_location,
            callback=callback,
        )

        self.train_loop._epoch = checkpoint['meta']['epoch']
        self.train_loop._iter = checkpoint['meta']['iter']

        # check whether the number of GPU used for current experiment
        # is consistent with resuming from checkpoint
        if 'config' in checkpoint['meta']:
            config = mmengine.Config.fromstring(
                checkpoint['meta']['config'], file_format='.py')
            previous_gpu_ids = config.get('gpu_ids', None)
            if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0
                    and len(previous_gpu_ids) != self.world_size):
                # TODO, should we modify the iteration?
                self.logger.info(
                    'Number of GPU used for current experiment is not '
                    'consistent with resuming from checkpoint')
                if (self._auto_scale_lr is None
                        or not self._auto_scale_lr.get('enable', False)):
                    raise RuntimeError(
                        'Cannot automatically rescale lr in resuming. Please '
                        'make sure the number of GPU is consistent with the '
                        'previous training state resuming from the checkpoint '
                        'or set `enable` in `auto_scale_lr to False.')

        resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None)
        dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None)

        # `resumed_dataset_meta` and `dataset_meta` could be object like
        # np.ndarray, which cannot be directly judged as equal or not,
        # therefore we just compared their dumped results.
        if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta):
            self.logger.warning(
                'The dataset metainfo from the resumed checkpoint is '
                'different from the current training dataset, please '
                'check the correctness of the checkpoint or the training '
                'dataset.')

        self.message_hub.load_state_dict(checkpoint['message_hub'])

        self.logger.info(f'resumed epoch: {self.epoch}, iter: {self.iter}')

    def load_checkpoint(self,
                        filename: str,
                        map_location: Union[str, Callable] = 'cpu',
                        strict: bool = False,
                        revise_keys: list = [(r'^module.', '')]):
        """Load checkpoint from given ``filename``.

        Args:
            filename (str): Accept local filepath, URL, ``torchvision://xxx``,
                ``open-mmlab://xxx``.
            map_location (str or callable): A string or a callable function to
                specifying how to remap storage locations.
                Defaults to 'cpu'.
            strict (bool): strict (bool): Whether to allow different params for
                the model and checkpoint.
            revise_keys (list): A list of customized keywords to modify the
                state_dict in checkpoint. Each item is a (pattern, replacement)
                pair of the regular expression operations. Defaults to strip
                the prefix 'module.' by [(r'^module\\.', '')].
        """

        def callback(checkpoint):
            self.call_hook('after_load_checkpoint', checkpoint=checkpoint)

        self.strategy.load_checkpoint(
            filename,
            map_location=map_location,
            strict=strict,
            revise_keys=revise_keys,
            callback=callback)

    def save_checkpoint(
        self,
        out_dir: str,
        filename: str,
        file_client_args: Optional[dict] = None,
        save_optimizer: bool = True,
        save_param_scheduler: bool = True,
        meta: dict = None,
        by_epoch: bool = True,
        backend_args: Optional[dict] = None,
    ):
        """Save checkpoints.

        ``CheckpointHook`` invokes this method to save checkpoints
        periodically.

        Args:
            out_dir (str): The directory that checkpoints are saved.
            filename (str): The checkpoint filename.
            file_client_args (dict, optional): Arguments to instantiate a
                FileClient. See :class:`mmengine.fileio.FileClient` for
                details. Defaults to None. It will be deprecated in future.
                Please use `backend_args` instead.
            save_optimizer (bool): Whether to save the optimizer to
                the checkpoint. Defaults to True.
            save_param_scheduler (bool): Whether to save the param_scheduler
                to the checkpoint. Defaults to True.
            meta (dict, optional): The meta information to be saved in the
                checkpoint. Defaults to None.
            by_epoch (bool): Whether the scheduled momentum is updated by
                epochs. Defaults to True.
            backend_args (dict, optional): Arguments to instantiate the
                prefix of uri corresponding backend. Defaults to None.
        """
        if meta is None:
            meta = {}
        elif not isinstance(meta, dict):
            raise TypeError(
                f'meta should be a dict or None, but got {type(meta)}')

        if by_epoch:
            # self.epoch increments 1 after
            # `self.call_hook('after_train_epoch)` but `save_checkpoint` is
            # called by `after_train_epoch`` method of `CheckpointHook` so
            # `epoch` should be `self.epoch + 1`
            meta.update(epoch=self.epoch + 1, iter=self.iter)
        else:
            meta.update(epoch=self.epoch, iter=self.iter + 1)

        if file_client_args is not None:
            warnings.warn(
                '"file_client_args" will be deprecated in future. '
                'Please use "backend_args" instead', DeprecationWarning)
            if backend_args is not None:
                raise ValueError(
                    '"file_client_args" and "backend_args" cannot be set at '
                    'the same time.')

            file_client = FileClient.infer_client(file_client_args, out_dir)
            filepath = file_client.join_path(out_dir, filename)
        else:
            filepath = join_path(  # type: ignore
                out_dir, filename, backend_args=backend_args)

        meta.update(
            cfg=self.cfg.pretty_text, experiment_name=self.experiment_name)

        if hasattr(self.train_dataloader.dataset, 'metainfo'):
            meta.update(dataset_meta=self.train_dataloader.dataset.metainfo)

        checkpoint = {
            'meta': meta,
            'message_hub': self.message_hub.state_dict()
        }

        def callback(checkpoint):
            self.call_hook('before_save_checkpoint', checkpoint=checkpoint)

        self.strategy.save_checkpoint(
            filename=filepath,
            save_optimizer=save_optimizer,
            save_param_scheduler=save_param_scheduler,
            extra_ckpt=checkpoint,
            callback=callback,
        )

    @master_only
    def dump_config(self) -> None:
        """Dump config to `work_dir`."""
        if self.cfg.filename is not None:
            filename = osp.basename(self.cfg.filename)
        else:
            filename = f'{self.timestamp}.py'
        self.cfg.dump(osp.join(self.work_dir, filename))

    def _log_env(self) -> None:
        """Logging environment information of the current task.

        Args:
            env_cfg (dict): The environment config of the runner.
        """
        # Collect and log environment information.
        system_env, runtime_env = self.strategy.collect_env()

        env_info = '\n    ' + '\n    '.join(f'{k}: {v}'
                                            for k, v in system_env.items())
        runtime_env_info = '\n    ' + '\n    '.join(
            f'{k}: {v}' for k, v in runtime_env.items())
        dash_line = '-' * 60
        self.logger.info('\n' + dash_line + '\nSystem environment:' +
                         env_info + '\n'
                         '\nRuntime environment:' + runtime_env_info + '\n' +
                         dash_line + '\n')

        if self.cfg._cfg_dict:
            self.logger.info(f'Config:\n{self.cfg.pretty_text}')


def _get_batch_size(dataloader):
    if isinstance(dataloader, dict):
        if 'batch_size' in dataloader:
            return dataloader['batch_size']
        elif ('batch_sampler' in dataloader
              and 'batch_size' in dataloader['batch_sampler']):
            return dataloader['batch_sampler']['batch_size']
        else:
            raise ValueError('Please set batch_size in `Dataloader` or '
                             '`batch_sampler`')
    elif isinstance(dataloader, DataLoader):
        return dataloader.batch_sampler.batch_size
    else:
        raise ValueError('dataloader should be a dict or a Dataloader '
                         f'instance, but got {type(dataloader)}')