File size: 10,256 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import warnings
from typing import List, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmengine.logging import print_log
from mmengine.utils.dl_utils import mmcv_full_available


def stack_batch(tensor_list: List[torch.Tensor],
                pad_size_divisor: int = 1,
                pad_value: Union[int, float] = 0) -> torch.Tensor:
    """Stack multiple tensors to form a batch and pad the tensor to the max
    shape use the right bottom padding mode in these images. If
    ``pad_size_divisor > 0``, add padding to ensure the shape of each dim is
    divisible by ``pad_size_divisor``.

    Args:
        tensor_list (List[Tensor]): A list of tensors with the same dim.
        pad_size_divisor (int): If ``pad_size_divisor > 0``, add padding
            to ensure the shape of each dim is divisible by
            ``pad_size_divisor``. This depends on the model, and many
            models need to be divisible by 32. Defaults to 1
        pad_value (int, float): The padding value. Defaults to 0.

    Returns:
       Tensor: The n dim tensor.
    """
    assert isinstance(
        tensor_list,
        list), (f'Expected input type to be list, but got {type(tensor_list)}')
    assert tensor_list, '`tensor_list` could not be an empty list'
    assert len({
        tensor.ndim
        for tensor in tensor_list
    }) == 1, (f'Expected the dimensions of all tensors must be the same, '
              f'but got {[tensor.ndim for tensor in tensor_list]}')

    dim = tensor_list[0].dim()
    num_img = len(tensor_list)
    all_sizes: torch.Tensor = torch.Tensor(
        [tensor.shape for tensor in tensor_list])
    max_sizes = torch.ceil(
        torch.max(all_sizes, dim=0)[0] / pad_size_divisor) * pad_size_divisor
    padded_sizes = max_sizes - all_sizes
    # The first dim normally means channel,  which should not be padded.
    padded_sizes[:, 0] = 0
    if padded_sizes.sum() == 0:
        return torch.stack(tensor_list)
    # `pad` is the second arguments of `F.pad`. If pad is (1, 2, 3, 4),
    # it means that padding the last dim with 1(left) 2(right), padding the
    # penultimate dim to 3(top) 4(bottom). The order of `pad` is opposite of
    # the `padded_sizes`. Therefore, the `padded_sizes` needs to be reversed,
    # and only odd index of pad should be assigned to keep padding "right" and
    # "bottom".
    pad = torch.zeros(num_img, 2 * dim, dtype=torch.int)
    pad[:, 1::2] = padded_sizes[:, range(dim - 1, -1, -1)]
    batch_tensor = []
    for idx, tensor in enumerate(tensor_list):
        batch_tensor.append(
            F.pad(tensor, tuple(pad[idx].tolist()), value=pad_value))
    return torch.stack(batch_tensor)


def detect_anomalous_params(loss: torch.Tensor, model) -> None:
    parameters_in_graph = set()
    visited = set()

    def traverse(grad_fn):
        if grad_fn is None:
            return
        if grad_fn not in visited:
            visited.add(grad_fn)
            if hasattr(grad_fn, 'variable'):
                parameters_in_graph.add(grad_fn.variable)
            parents = grad_fn.next_functions
            if parents is not None:
                for parent in parents:
                    grad_fn = parent[0]
                    traverse(grad_fn)

    traverse(loss.grad_fn)
    for n, p in model.named_parameters():
        if p not in parameters_in_graph and p.requires_grad:
            print_log(
                f'{n} with shape {p.size()} is not '
                f'in the computational graph \n',
                logger='current',
                level=logging.ERROR)


def merge_dict(*args):
    """Merge all dictionaries into one dictionary.

    If pytorch version >= 1.8, ``merge_dict`` will be wrapped
    by ``torch.fx.wrap``,  which will make ``torch.fx.symbolic_trace`` skip
    trace ``merge_dict``.

    Note:
        If a function needs to be traced by ``torch.fx.symbolic_trace``,
        but inevitably needs to use ``update`` method of ``dict``(``update``
        is not traceable). It should use ``merge_dict`` to replace
        ``xxx.update``.

    Args:
        *args: dictionary needs to be merged.

    Returns:
        dict: Merged dict from args
    """
    output = dict()
    for item in args:
        assert isinstance(
            item,
            dict), (f'all arguments of merge_dict should be a dict, but got '
                    f'{type(item)}')
        output.update(item)
    return output


# torch.fx is only available when pytorch version >= 1.8.
# If the subclass of `BaseModel` has multiple submodules, and each module
# will return a loss dict during training process, i.e., `TwoStageDetector`
# in mmdet. It should use `merge_dict` to get the total loss, rather than
# `loss.update` to keep model traceable.
try:
    import torch.fx

    # make torch.fx skip trace `merge_dict`.
    merge_dict = torch.fx.wrap(merge_dict)

except ImportError:
    warnings.warn('Cannot import torch.fx, `merge_dict` is a simple function '
                  'to merge multiple dicts')


class _BatchNormXd(nn.modules.batchnorm._BatchNorm):
    """A general BatchNorm layer without input dimension check.

    Reproduced from @kapily's work:
    (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
    The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
    is `_check_input_dim` that is designed for tensor sanity checks.
    The check has been bypassed in this class for the convenience of converting
    SyncBatchNorm.
    """

    def _check_input_dim(self, input: torch.Tensor):
        return


def revert_sync_batchnorm(module: nn.Module) -> nn.Module:
    """Helper function to convert all `SyncBatchNorm` (SyncBN) and
    `mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to
    `BatchNormXd` layers.

    Adapted from @kapily's work:
    (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)

    Args:
        module (nn.Module): The module containing `SyncBatchNorm` layers.

    Returns:
        module_output: The converted module with `BatchNormXd` layers.
    """
    module_output = module
    module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm]

    if mmcv_full_available():
        from mmcv.ops import SyncBatchNorm
        module_checklist.append(SyncBatchNorm)

    if isinstance(module, tuple(module_checklist)):
        module_output = _BatchNormXd(module.num_features, module.eps,
                                     module.momentum, module.affine,
                                     module.track_running_stats)
        if module.affine:
            # no_grad() may not be needed here but
            # just to be consistent with `convert_sync_batchnorm()`
            with torch.no_grad():
                module_output.weight = module.weight
                module_output.bias = module.bias
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
        module_output.training = module.training
        # qconfig exists in quantized models
        if hasattr(module, 'qconfig'):
            module_output.qconfig = module.qconfig
    for name, child in module.named_children():
        # Some custom modules or 3rd party implemented modules may raise an
        # error when calling `add_module`. Therefore, try to catch the error
        # and do not raise it. See https://github.com/open-mmlab/mmengine/issues/638 # noqa: E501
        # for more details.
        try:
            module_output.add_module(name, revert_sync_batchnorm(child))
        except Exception:
            print_log(
                F'Failed to convert {child} from SyncBN to BN!',
                logger='current',
                level=logging.WARNING)
    del module
    return module_output


def convert_sync_batchnorm(module: nn.Module,
                           implementation='torch') -> nn.Module:
    """Helper function to convert all `BatchNorm` layers in the model to
    `SyncBatchNorm` (SyncBN) or `mmcv.ops.sync_bn.SyncBatchNorm` (MMSyncBN)
    layers. Adapted from `PyTorch convert sync batchnorm`_.

    Args:
        module (nn.Module): The module containing `SyncBatchNorm` layers.
        implementation (str): The type of `SyncBatchNorm` to convert to.

            - 'torch': convert to `torch.nn.modules.batchnorm.SyncBatchNorm`.
            - 'mmcv': convert to `mmcv.ops.sync_bn.SyncBatchNorm`.

    Returns:
        nn.Module: The converted module with `SyncBatchNorm` layers.

    .. _PyTorch convert sync batchnorm:
       https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html#torch.nn.SyncBatchNorm.convert_sync_batchnorm
    """  # noqa: E501
    module_output = module

    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        if implementation == 'torch':
            SyncBatchNorm = torch.nn.modules.batchnorm.SyncBatchNorm
        elif implementation == 'mmcv':
            from mmcv.ops import SyncBatchNorm  # type: ignore
        else:
            raise ValueError('sync_bn should be "torch" or "mmcv", but got '
                             f'{implementation}')

        module_output = SyncBatchNorm(module.num_features, module.eps,
                                      module.momentum, module.affine,
                                      module.track_running_stats)

        if module.affine:
            with torch.no_grad():
                module_output.weight = module.weight
                module_output.bias = module.bias
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
        if hasattr(module, 'qconfig'):
            module_output.qconfig = module.qconfig
    for name, child in module.named_children():
        module_output.add_module(name,
                                 convert_sync_batchnorm(child, implementation))
    del module
    return module_output