Spaces:
Build error
Build error
File size: 10,256 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import warnings
from typing import List, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.utils.dl_utils import mmcv_full_available
def stack_batch(tensor_list: List[torch.Tensor],
pad_size_divisor: int = 1,
pad_value: Union[int, float] = 0) -> torch.Tensor:
"""Stack multiple tensors to form a batch and pad the tensor to the max
shape use the right bottom padding mode in these images. If
``pad_size_divisor > 0``, add padding to ensure the shape of each dim is
divisible by ``pad_size_divisor``.
Args:
tensor_list (List[Tensor]): A list of tensors with the same dim.
pad_size_divisor (int): If ``pad_size_divisor > 0``, add padding
to ensure the shape of each dim is divisible by
``pad_size_divisor``. This depends on the model, and many
models need to be divisible by 32. Defaults to 1
pad_value (int, float): The padding value. Defaults to 0.
Returns:
Tensor: The n dim tensor.
"""
assert isinstance(
tensor_list,
list), (f'Expected input type to be list, but got {type(tensor_list)}')
assert tensor_list, '`tensor_list` could not be an empty list'
assert len({
tensor.ndim
for tensor in tensor_list
}) == 1, (f'Expected the dimensions of all tensors must be the same, '
f'but got {[tensor.ndim for tensor in tensor_list]}')
dim = tensor_list[0].dim()
num_img = len(tensor_list)
all_sizes: torch.Tensor = torch.Tensor(
[tensor.shape for tensor in tensor_list])
max_sizes = torch.ceil(
torch.max(all_sizes, dim=0)[0] / pad_size_divisor) * pad_size_divisor
padded_sizes = max_sizes - all_sizes
# The first dim normally means channel, which should not be padded.
padded_sizes[:, 0] = 0
if padded_sizes.sum() == 0:
return torch.stack(tensor_list)
# `pad` is the second arguments of `F.pad`. If pad is (1, 2, 3, 4),
# it means that padding the last dim with 1(left) 2(right), padding the
# penultimate dim to 3(top) 4(bottom). The order of `pad` is opposite of
# the `padded_sizes`. Therefore, the `padded_sizes` needs to be reversed,
# and only odd index of pad should be assigned to keep padding "right" and
# "bottom".
pad = torch.zeros(num_img, 2 * dim, dtype=torch.int)
pad[:, 1::2] = padded_sizes[:, range(dim - 1, -1, -1)]
batch_tensor = []
for idx, tensor in enumerate(tensor_list):
batch_tensor.append(
F.pad(tensor, tuple(pad[idx].tolist()), value=pad_value))
return torch.stack(batch_tensor)
def detect_anomalous_params(loss: torch.Tensor, model) -> None:
parameters_in_graph = set()
visited = set()
def traverse(grad_fn):
if grad_fn is None:
return
if grad_fn not in visited:
visited.add(grad_fn)
if hasattr(grad_fn, 'variable'):
parameters_in_graph.add(grad_fn.variable)
parents = grad_fn.next_functions
if parents is not None:
for parent in parents:
grad_fn = parent[0]
traverse(grad_fn)
traverse(loss.grad_fn)
for n, p in model.named_parameters():
if p not in parameters_in_graph and p.requires_grad:
print_log(
f'{n} with shape {p.size()} is not '
f'in the computational graph \n',
logger='current',
level=logging.ERROR)
def merge_dict(*args):
"""Merge all dictionaries into one dictionary.
If pytorch version >= 1.8, ``merge_dict`` will be wrapped
by ``torch.fx.wrap``, which will make ``torch.fx.symbolic_trace`` skip
trace ``merge_dict``.
Note:
If a function needs to be traced by ``torch.fx.symbolic_trace``,
but inevitably needs to use ``update`` method of ``dict``(``update``
is not traceable). It should use ``merge_dict`` to replace
``xxx.update``.
Args:
*args: dictionary needs to be merged.
Returns:
dict: Merged dict from args
"""
output = dict()
for item in args:
assert isinstance(
item,
dict), (f'all arguments of merge_dict should be a dict, but got '
f'{type(item)}')
output.update(item)
return output
# torch.fx is only available when pytorch version >= 1.8.
# If the subclass of `BaseModel` has multiple submodules, and each module
# will return a loss dict during training process, i.e., `TwoStageDetector`
# in mmdet. It should use `merge_dict` to get the total loss, rather than
# `loss.update` to keep model traceable.
try:
import torch.fx
# make torch.fx skip trace `merge_dict`.
merge_dict = torch.fx.wrap(merge_dict)
except ImportError:
warnings.warn('Cannot import torch.fx, `merge_dict` is a simple function '
'to merge multiple dicts')
class _BatchNormXd(nn.modules.batchnorm._BatchNorm):
"""A general BatchNorm layer without input dimension check.
Reproduced from @kapily's work:
(https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
is `_check_input_dim` that is designed for tensor sanity checks.
The check has been bypassed in this class for the convenience of converting
SyncBatchNorm.
"""
def _check_input_dim(self, input: torch.Tensor):
return
def revert_sync_batchnorm(module: nn.Module) -> nn.Module:
"""Helper function to convert all `SyncBatchNorm` (SyncBN) and
`mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to
`BatchNormXd` layers.
Adapted from @kapily's work:
(https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
Args:
module (nn.Module): The module containing `SyncBatchNorm` layers.
Returns:
module_output: The converted module with `BatchNormXd` layers.
"""
module_output = module
module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm]
if mmcv_full_available():
from mmcv.ops import SyncBatchNorm
module_checklist.append(SyncBatchNorm)
if isinstance(module, tuple(module_checklist)):
module_output = _BatchNormXd(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
# no_grad() may not be needed here but
# just to be consistent with `convert_sync_batchnorm()`
with torch.no_grad():
module_output.weight = module.weight
module_output.bias = module.bias
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
module_output.training = module.training
# qconfig exists in quantized models
if hasattr(module, 'qconfig'):
module_output.qconfig = module.qconfig
for name, child in module.named_children():
# Some custom modules or 3rd party implemented modules may raise an
# error when calling `add_module`. Therefore, try to catch the error
# and do not raise it. See https://github.com/open-mmlab/mmengine/issues/638 # noqa: E501
# for more details.
try:
module_output.add_module(name, revert_sync_batchnorm(child))
except Exception:
print_log(
F'Failed to convert {child} from SyncBN to BN!',
logger='current',
level=logging.WARNING)
del module
return module_output
def convert_sync_batchnorm(module: nn.Module,
implementation='torch') -> nn.Module:
"""Helper function to convert all `BatchNorm` layers in the model to
`SyncBatchNorm` (SyncBN) or `mmcv.ops.sync_bn.SyncBatchNorm` (MMSyncBN)
layers. Adapted from `PyTorch convert sync batchnorm`_.
Args:
module (nn.Module): The module containing `SyncBatchNorm` layers.
implementation (str): The type of `SyncBatchNorm` to convert to.
- 'torch': convert to `torch.nn.modules.batchnorm.SyncBatchNorm`.
- 'mmcv': convert to `mmcv.ops.sync_bn.SyncBatchNorm`.
Returns:
nn.Module: The converted module with `SyncBatchNorm` layers.
.. _PyTorch convert sync batchnorm:
https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html#torch.nn.SyncBatchNorm.convert_sync_batchnorm
""" # noqa: E501
module_output = module
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
if implementation == 'torch':
SyncBatchNorm = torch.nn.modules.batchnorm.SyncBatchNorm
elif implementation == 'mmcv':
from mmcv.ops import SyncBatchNorm # type: ignore
else:
raise ValueError('sync_bn should be "torch" or "mmcv", but got '
f'{implementation}')
module_output = SyncBatchNorm(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
with torch.no_grad():
module_output.weight = module.weight
module_output.bias = module.bias
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
if hasattr(module, 'qconfig'):
module_output.qconfig = module.qconfig
for name, child in module.named_children():
module_output.add_module(name,
convert_sync_batchnorm(child, implementation))
del module
return module_output
|