Spaces:
Build error
Build error
File size: 27,863 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import importlib
import os.path as osp
import re
import warnings
from abc import ABCMeta, abstractmethod
from datetime import datetime
from typing import (Any, Callable, Dict, Iterable, List, Optional, Sequence,
Tuple, Union)
import numpy as np
import torch
import torch.nn as nn
from rich.progress import track
from mmengine.config import Config, ConfigDict
from mmengine.config.utils import MODULE2PACKAGE
from mmengine.dataset import pseudo_collate
from mmengine.device import get_device
from mmengine.fileio import (get_file_backend, isdir, join_path,
list_dir_or_file, load)
from mmengine.logging import print_log
from mmengine.registry import FUNCTIONS, MODELS, VISUALIZERS, DefaultScope
from mmengine.runner.checkpoint import (_load_checkpoint,
_load_checkpoint_to_model)
from mmengine.structures import InstanceData
from mmengine.visualization import Visualizer
InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray, torch.Tensor]
InputsType = Union[InputType, Sequence[InputType]]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ResType = Union[Dict, List[Dict]]
ConfigType = Union[Config, ConfigDict]
ModelType = Union[dict, ConfigType, str]
class InferencerMeta(ABCMeta):
"""Check the legality of the inferencer.
All Inferencers should not define duplicated keys for
``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs`` and
``postprocess_kwargs``.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert isinstance(self.preprocess_kwargs, set)
assert isinstance(self.forward_kwargs, set)
assert isinstance(self.visualize_kwargs, set)
assert isinstance(self.postprocess_kwargs, set)
all_kwargs = (
self.preprocess_kwargs | self.forward_kwargs
| self.visualize_kwargs | self.postprocess_kwargs)
assert len(all_kwargs) == (
len(self.preprocess_kwargs) + len(self.forward_kwargs) +
len(self.visualize_kwargs) + len(self.postprocess_kwargs)), (
f'Class define error! {self.__name__} should not '
'define duplicated keys for `preprocess_kwargs`, '
'`forward_kwargs`, `visualize_kwargs` and '
'`postprocess_kwargs` are not allowed.')
class BaseInferencer(metaclass=InferencerMeta):
"""Base inferencer for downstream tasks.
The BaseInferencer provides the standard workflow for inference as follows:
1. Preprocess the input data by :meth:`preprocess`.
2. Forward the data to the model by :meth:`forward`. ``BaseInferencer``
assumes the model inherits from :class:`mmengine.models.BaseModel` and
will call `model.test_step` in :meth:`forward` by default.
3. Visualize the results by :meth:`visualize`.
4. Postprocess and return the results by :meth:`postprocess`.
When we call the subclasses inherited from BaseInferencer (not overriding
``__call__``), the workflow will be executed in order.
All subclasses of BaseInferencer could define the following class
attributes for customization:
- ``preprocess_kwargs``: The keys of the kwargs that will be passed to
:meth:`preprocess`.
- ``forward_kwargs``: The keys of the kwargs that will be passed to
:meth:`forward`
- ``visualize_kwargs``: The keys of the kwargs that will be passed to
:meth:`visualize`
- ``postprocess_kwargs``: The keys of the kwargs that will be passed to
:meth:`postprocess`
All attributes mentioned above should be a ``set`` of keys (strings),
and each key should not be duplicated. Actually, :meth:`__call__` will
dispatch all the arguments to the corresponding methods according to the
``xxx_kwargs`` mentioned above, therefore, the key in sets should
be unique to avoid ambiguous dispatching.
Warning:
If subclasses defined the class attributes mentioned above with
duplicated keys, an ``AssertionError`` will be raised during import
process.
Subclasses inherited from ``BaseInferencer`` should implement
:meth:`_init_pipeline`, :meth:`visualize` and :meth:`postprocess`:
- _init_pipeline: Return a callable object to preprocess the input data.
- visualize: Visualize the results returned by :meth:`forward`.
- postprocess: Postprocess the results returned by :meth:`forward` and
:meth:`visualize`.
Args:
model (str, optional): Path to the config file or the model name
defined in metafile. Take the `mmdet metafile <https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet/metafile.yml>`_
as an example, the `model` could be `retinanet_r18_fpn_1x_coco` or
its alias. If model is not specified, user must provide the
`weights` saved by MMEngine which contains the config string.
Defaults to None.
weights (str, optional): Path to the checkpoint. If it is not specified
and model is a model name of metafile, the weights will be loaded
from metafile. Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
scope (str, optional): The scope of the model. Defaults to None.
show_progress (bool): Control whether to display the progress bar during
the inference process. Defaults to True.
`New in version 0.7.4.`
Note:
Since ``Inferencer`` could be used to infer batch data,
`collate_fn` should be defined. If `collate_fn` is not defined in config
file, the `collate_fn` will be `pseudo_collate` by default.
""" # noqa: E501
preprocess_kwargs: set = set()
forward_kwargs: set = set()
visualize_kwargs: set = set()
postprocess_kwargs: set = set()
def __init__(self,
model: Union[ModelType, str, None] = None,
weights: Optional[str] = None,
device: Optional[str] = None,
scope: Optional[str] = None,
show_progress: bool = True) -> None:
if scope is None:
default_scope = DefaultScope.get_current_instance()
if default_scope is not None:
scope = default_scope.scope_name
self.scope = scope
# Load config to cfg
cfg: ConfigType
if isinstance(model, str):
if osp.isfile(model):
cfg = Config.fromfile(model)
else:
# Load config and weights from metafile. If `weights` is
# assigned, the weights defined in metafile will be ignored.
cfg, _weights = self._load_model_from_metafile(model)
if weights is None:
weights = _weights
elif isinstance(model, (Config, ConfigDict)):
cfg = copy.deepcopy(model)
elif isinstance(model, dict):
cfg = copy.deepcopy(ConfigDict(model))
elif model is None:
if weights is None:
raise ValueError(
'If model is None, the weights must be specified since '
'the config needs to be loaded from the weights')
cfg = ConfigDict()
else:
raise TypeError('model must be a filepath or any ConfigType'
f'object, but got {type(model)}')
if device is None:
device = get_device()
self.model = self._init_model(cfg, weights, device) # type: ignore
self.pipeline = self._init_pipeline(cfg)
self.collate_fn = self._init_collate(cfg)
self.visualizer = self._init_visualizer(cfg)
self.cfg = cfg
self.show_progress = show_progress
def __call__(
self,
inputs: InputsType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs,
) -> dict:
"""Call the inferencer.
Args:
inputs (InputsType): Inputs for the inferencer.
return_datasamples (bool): Whether to return results as
:obj:`BaseDataElement`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
**kwargs: Key words arguments passed to :meth:`preprocess`,
:meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
Each key in kwargs should be in the corresponding set of
``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
and ``postprocess_kwargs``.
Returns:
dict: Inference and visualization results.
"""
(
preprocess_kwargs,
forward_kwargs,
visualize_kwargs,
postprocess_kwargs,
) = self._dispatch_kwargs(**kwargs)
ori_inputs = self._inputs_to_list(inputs)
inputs = self.preprocess(
ori_inputs, batch_size=batch_size, **preprocess_kwargs)
preds = []
for data in (track(inputs, description='Inference')
if self.show_progress else inputs):
preds.extend(self.forward(data, **forward_kwargs))
visualization = self.visualize(
ori_inputs, preds,
**visualize_kwargs) # type: ignore # noqa: E501
results = self.postprocess(preds, visualization, return_datasamples,
**postprocess_kwargs)
return results
def _inputs_to_list(self, inputs: InputsType) -> list:
"""Preprocess the inputs to a list.
Preprocess inputs to a list according to its type:
- list or tuple: return inputs
- str:
- Directory path: return all files in the directory
- other cases: return a list containing the string. The string
could be a path to file, a url or other types of string according
to the task.
Args:
inputs (InputsType): Inputs for the inferencer.
Returns:
list: List of input for the :meth:`preprocess`.
"""
if isinstance(inputs, str):
backend = get_file_backend(inputs)
if hasattr(backend, 'isdir') and isdir(inputs):
# Backends like HttpsBackend do not implement `isdir`, so only
# those backends that implement `isdir` could accept the inputs
# as a directory
filename_list = list_dir_or_file(inputs, list_dir=False)
inputs = [
join_path(inputs, filename) for filename in filename_list
]
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
return list(inputs)
def preprocess(self, inputs: InputsType, batch_size: int = 1, **kwargs):
"""Process the inputs into a model-feedable format.
Customize your preprocess by overriding this method. Preprocess should
return an iterable object, of which each item will be used as the
input of ``model.test_step``.
``BaseInferencer.preprocess`` will return an iterable chunked data,
which will be used in __call__ like this:
.. code-block:: python
def __call__(self, inputs, batch_size=1, **kwargs):
chunked_data = self.preprocess(inputs, batch_size, **kwargs)
for batch in chunked_data:
preds = self.forward(batch, **kwargs)
Args:
inputs (InputsType): Inputs given by user.
batch_size (int): batch size. Defaults to 1.
Yields:
Any: Data processed by the ``pipeline`` and ``collate_fn``.
"""
chunked_data = self._get_chunk_data(
map(self.pipeline, inputs), batch_size)
yield from map(self.collate_fn, chunked_data)
@torch.no_grad()
def forward(self, inputs: Union[dict, tuple], **kwargs) -> Any:
"""Feed the inputs to the model."""
return self.model.test_step(inputs)
@abstractmethod
def visualize(self,
inputs: list,
preds: Any,
show: bool = False,
**kwargs) -> List[np.ndarray]:
"""Visualize predictions.
Customize your visualization by overriding this method. visualize
should return visualization results, which could be np.ndarray or any
other objects.
Args:
inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
preds (Any): Predictions of the model.
show (bool): Whether to display the image in a popup window.
Defaults to False.
Returns:
List[np.ndarray]: Visualization results.
"""
@abstractmethod
def postprocess(
self,
preds: Any,
visualization: List[np.ndarray],
return_datasample=False,
**kwargs,
) -> dict:
"""Process the predictions and visualization results from ``forward``
and ``visualize``.
This method should be responsible for the following tasks:
1. Convert datasamples into a json-serializable dict if needed.
2. Pack the predictions and visualization results and return them.
3. Dump or log the predictions.
Customize your postprocess by overriding this method. Make sure
``postprocess`` will return a dict with visualization results and
inference results.
Args:
preds (List[Dict]): Predictions of the model.
visualization (np.ndarray): Visualized predictions.
return_datasample (bool): Whether to return results as datasamples.
Defaults to False.
Returns:
dict: Inference and visualization results with key ``predictions``
and ``visualization``
- ``visualization (Any)``: Returned by :meth:`visualize`
- ``predictions`` (dict or DataSample): Returned by
:meth:`forward` and processed in :meth:`postprocess`.
If ``return_datasample=False``, it usually should be a
json-serializable dict containing only basic data elements such
as strings and numbers.
"""
def _load_model_from_metafile(self, model: str) -> Tuple[Config, str]:
"""Load config and weights from metafile.
Args:
model (str): model name defined in metafile.
Returns:
Tuple[Config, str]: Loaded Config and weights path defined in
metafile.
"""
model = model.lower()
assert self.scope is not None, (
'scope should be initialized if you want '
'to load config from metafile.')
assert self.scope in MODULE2PACKAGE, (
f'{self.scope} not in {MODULE2PACKAGE}!,'
'please pass a valid scope.')
repo_or_mim_dir = BaseInferencer._get_repo_or_mim_dir(self.scope)
for model_cfg in BaseInferencer._get_models_from_metafile(
repo_or_mim_dir):
model_name = model_cfg['Name'].lower()
model_aliases = model_cfg.get('Alias', [])
if isinstance(model_aliases, str):
model_aliases = [model_aliases.lower()]
else:
model_aliases = [alias.lower() for alias in model_aliases]
if (model_name == model or model in model_aliases):
cfg = Config.fromfile(
osp.join(repo_or_mim_dir, model_cfg['Config']))
weights = model_cfg['Weights']
weights = weights[0] if isinstance(weights, list) else weights
return cfg, weights
raise ValueError(f'Cannot find model: {model} in {self.scope}')
@staticmethod
def _get_repo_or_mim_dir(scope):
"""Get the directory where the ``Configs`` located when the package is
installed or ``PYTHONPATH`` is set.
Args:
scope (str): The scope of repository.
Returns:
str: The directory where the ``Configs`` is located.
"""
try:
module = importlib.import_module(scope)
except ImportError:
if scope not in MODULE2PACKAGE:
raise KeyError(
f'{scope} is not a valid scope. The available scopes '
f'are {MODULE2PACKAGE.keys()}')
else:
project = MODULE2PACKAGE[scope]
raise ImportError(
f'Cannot import {scope} correctly, please try to install '
f'the {project} by "pip install {project}"')
# Since none of OpenMMLab series packages are namespace packages
# (https://docs.python.org/3/glossary.html#term-namespace-package),
# The first element of module.__path__ means package installation path.
package_path = module.__path__[0]
if osp.exists(osp.join(osp.dirname(package_path), 'configs')):
repo_dir = osp.dirname(package_path)
return repo_dir
else:
mim_dir = osp.join(package_path, '.mim')
if not osp.exists(osp.join(mim_dir, 'configs')):
raise FileNotFoundError(
f'Cannot find `configs` directory in {package_path}!, '
f'please check the completeness of the {scope}.')
return mim_dir
def _init_model(
self,
cfg: ConfigType,
weights: Optional[str],
device: str = 'cpu',
) -> nn.Module:
"""Initialize the model with the given config and checkpoint on the
specific device.
Args:
cfg (ConfigType): Config containing the model information.
weights (str, optional): Path to the checkpoint.
device (str, optional): Device to run inference. Defaults to 'cpu'.
Returns:
nn.Module: Model loaded with checkpoint.
"""
checkpoint: Optional[dict] = None
if weights is not None:
checkpoint = _load_checkpoint(weights, map_location='cpu')
if not cfg:
assert checkpoint is not None
try:
# Prefer to get config from `message_hub` since `message_hub`
# is a more stable module to store all runtime information.
# However, the early version of MMEngine will not save config
# in `message_hub`, so we will try to load config from `meta`.
cfg_string = checkpoint['message_hub']['runtime_info']['cfg']
except KeyError:
assert 'meta' in checkpoint, (
'If model(config) is not provided, the checkpoint must'
'contain the config string in `meta` or `message_hub`, '
'but both `meta` and `message_hub` are not found in the '
'checkpoint.')
meta = checkpoint['meta']
if 'cfg' in meta:
cfg_string = meta['cfg']
else:
raise ValueError(
'Cannot find the config in the checkpoint.')
cfg.update(
Config.fromstring(cfg_string, file_format='.py')._cfg_dict)
# Delete the `pretrained` field to prevent model from loading the
# the pretrained weights unnecessarily.
if cfg.model.get('pretrained') is not None:
del cfg.model.pretrained
model = MODELS.build(cfg.model)
model.cfg = cfg
self._load_weights_to_model(model, checkpoint, cfg)
model.to(device)
model.eval()
return model
def _load_weights_to_model(self, model: nn.Module,
checkpoint: Optional[dict],
cfg: Optional[ConfigType]) -> None:
"""Loading model weights and meta information from cfg and checkpoint.
Subclasses could override this method to load extra meta information
from ``checkpoint`` and ``cfg`` to model.
Args:
model (nn.Module): Model to load weights and meta information.
checkpoint (dict, optional): The loaded checkpoint.
cfg (Config or ConfigDict, optional): The loaded config.
"""
if checkpoint is not None:
_load_checkpoint_to_model(model, checkpoint)
else:
warnings.warn('Checkpoint is not loaded, and the inference '
'result is calculated by the randomly initialized '
'model!')
def _init_collate(self, cfg: ConfigType) -> Callable:
"""Initialize the ``collate_fn`` with the given config.
The returned ``collate_fn`` will be used to collate the batch data.
If will be used in :meth:`preprocess` like this
.. code-block:: python
def preprocess(self, inputs, batch_size, **kwargs):
...
dataloader = map(self.collate_fn, dataloader)
yield from dataloader
Args:
cfg (ConfigType): Config which could contained the `collate_fn`
information. If `collate_fn` is not defined in config, it will
be :func:`pseudo_collate`.
Returns:
Callable: Collate function.
"""
try:
with FUNCTIONS.switch_scope_and_registry(self.scope) as registry:
collate_fn = registry.get(cfg.test_dataloader.collate_fn)
except AttributeError:
collate_fn = pseudo_collate
return collate_fn # type: ignore
@abstractmethod
def _init_pipeline(self, cfg: ConfigType) -> Callable:
"""Initialize the test pipeline.
Return a pipeline to handle various input data, such as ``str``,
``np.ndarray``. It is an abstract method in BaseInferencer, and should
be implemented in subclasses.
The returned pipeline will be used to process a single data.
It will be used in :meth:`preprocess` like this:
.. code-block:: python
def preprocess(self, inputs, batch_size, **kwargs):
...
dataset = map(self.pipeline, dataset)
...
"""
def _init_visualizer(self, cfg: ConfigType) -> Optional[Visualizer]:
"""Initialize visualizers.
Args:
cfg (ConfigType): Config containing the visualizer information.
Returns:
Visualizer or None: Visualizer initialized with config.
"""
if 'visualizer' not in cfg:
return None
timestamp = str(datetime.timestamp(datetime.now()))
name = cfg.visualizer.get('name', timestamp)
if Visualizer.check_instance_created(name):
name = f'{name}-{timestamp}'
cfg.visualizer.name = name
return VISUALIZERS.build(cfg.visualizer)
def _get_chunk_data(self, inputs: Iterable, chunk_size: int):
"""Get batch data from dataset.
Args:
inputs (Iterable): An iterable dataset.
chunk_size (int): Equivalent to batch size.
Yields:
list: batch data.
"""
inputs_iter = iter(inputs)
while True:
try:
chunk_data = []
for _ in range(chunk_size):
processed_data = next(inputs_iter)
chunk_data.append(processed_data)
yield chunk_data
except StopIteration:
if chunk_data:
yield chunk_data
break
def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]:
"""Dispatch kwargs to preprocess(), forward(), visualize() and
postprocess() according to the actual demands.
Returns:
Tuple[Dict, Dict, Dict, Dict]: kwargs passed to preprocess,
forward, visualize and postprocess respectively.
"""
# Ensure each argument only matches one function
method_kwargs = self.preprocess_kwargs | self.forward_kwargs | \
self.visualize_kwargs | self.postprocess_kwargs
union_kwargs = method_kwargs | set(kwargs.keys())
if union_kwargs != method_kwargs:
unknown_kwargs = union_kwargs - method_kwargs
raise ValueError(
f'unknown argument {unknown_kwargs} for `preprocess`, '
'`forward`, `visualize` and `postprocess`')
preprocess_kwargs = {}
forward_kwargs = {}
visualize_kwargs = {}
postprocess_kwargs = {}
for key, value in kwargs.items():
if key in self.preprocess_kwargs:
preprocess_kwargs[key] = value
elif key in self.forward_kwargs:
forward_kwargs[key] = value
elif key in self.visualize_kwargs:
visualize_kwargs[key] = value
else:
postprocess_kwargs[key] = value
return (
preprocess_kwargs,
forward_kwargs,
visualize_kwargs,
postprocess_kwargs,
)
@staticmethod
def _get_models_from_metafile(dir: str):
"""Load model config defined in metafile from package path.
Args:
dir (str): Path to the directory of Config. It requires the
directory ``Config``, file ``model-index.yml`` exists in the
``dir``.
Yields:
dict: Model config defined in metafile.
"""
meta_indexes = load(osp.join(dir, 'model-index.yml'))
for meta_path in meta_indexes['Import']:
# meta_path example: mmcls/.mim/configs/conformer/metafile.yml
meta_path = osp.join(dir, meta_path)
metainfo = load(meta_path)
yield from metainfo['Models']
@staticmethod
def list_models(scope: Optional[str] = None, patterns: str = r'.*'):
"""List models defined in metafile of corresponding packages.
Args:
scope (str, optional): The scope to which the model belongs.
Defaults to None.
patterns (str, optional): Regular expressions for the searched
models. Once matched with ``Alias`` or ``Name`` filed in
metafile, corresponding model will be added to the return list.
Defaults to '.*'.
Returns:
dict: Model dict with model name and its alias.
"""
matched_models = []
if scope is None:
default_scope = DefaultScope.get_current_instance()
assert default_scope is not None, (
'scope should be initialized if you want '
'to load config from metafile.')
assert scope in MODULE2PACKAGE, (
f'{scope} not in {MODULE2PACKAGE}!, please make pass a valid '
'scope.')
root_or_mim_dir = BaseInferencer._get_repo_or_mim_dir(scope)
for model_cfg in BaseInferencer._get_models_from_metafile(
root_or_mim_dir):
model_name = [model_cfg['Name']]
model_name.extend(model_cfg.get('Alias', []))
for name in model_name:
if re.match(patterns, name) is not None:
matched_models.append(name)
output_str = ''
for name in matched_models:
output_str += f'model_name: {name}\n'
print_log(output_str, logger='current')
return matched_models
|