Spaces:
Build error
Build error
File size: 43,679 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os.path as osp
import pickle
import shutil
import tempfile
from collections import OrderedDict
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor
from torch import distributed as torch_dist
from torch._utils import (_flatten_dense_tensors, _take_tensors,
_unflatten_dense_tensors)
from torch.distributed import ProcessGroup
import mmengine
from .utils import (get_world_size, get_rank, get_backend, get_dist_info,
get_default_group, barrier, get_data_device,
get_comm_device, cast_data_device)
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
from mmengine.device import is_npu_available
def _get_reduce_op(name: str) -> torch_dist.ReduceOp:
op_mappings = {
'sum': torch_dist.ReduceOp.SUM,
'product': torch_dist.ReduceOp.PRODUCT,
'min': torch_dist.ReduceOp.MIN,
'max': torch_dist.ReduceOp.MAX,
'band': torch_dist.ReduceOp.BAND,
'bor': torch_dist.ReduceOp.BOR,
'bxor': torch_dist.ReduceOp.BXOR,
}
if name.lower() not in op_mappings:
raise ValueError(
f'reduce op should be one of {op_mappings.keys()}, bug got {name}')
return op_mappings[name.lower()]
def all_reduce(data: Tensor,
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
"""Reduces the tensor data across all machines in such a way that all get
the final result.
After the call ``data`` is going to be bitwise identical in all
processes.
Note:
Calling ``all_reduce`` in non-distributed environment does nothing.
Args:
data (Tensor): Input and output of the collective. The function
operates in-place.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> dist.all_reduce(data)
>>> data
tensor([0, 1])
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.all_reduce(data, op=dist.ReduceOp.SUM)
>>> data
tensor([4, 6]) # Rank 0
tensor([4, 6]) # Rank 1
"""
world_size = get_world_size(group)
if world_size > 1:
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
# pytorch does not support 'mean' operation so we fall back to support
# it with 'sum' operation.
if op.lower() == 'mean':
torch_dist.all_reduce(data_on_device, _get_reduce_op('sum'), group)
# use true_divide to handle torch1.6.0 throws an RuntimeError when
# the type of `data_on_device` is int64
data_on_device = torch.true_divide(data_on_device, world_size)
else:
torch_dist.all_reduce(data_on_device, _get_reduce_op(op), group)
cast_data_device(data_on_device, input_device, out=data)
def all_gather(data: Tensor,
group: Optional[ProcessGroup] = None) -> List[Tensor]:
"""Gather data from the whole group in a list.
Note:
Calling ``all_gather`` in non-distributed environment does nothing
and just returns a list containing :attr:`data` itself.
Note:
Unlike PyTorch ``torch.distributed.all_gather``, :meth:`all_gather` in
MMEngine does not pass in an empty list ``gather_list`` and returns
the ``gather_list`` directly, which is more convenient. The difference
between their interfaces is as below:
- MMEngine: all_gather(data, group) -> gather_list
- PyTorch: all_gather(gather_list, data, group) -> None
Args:
data (Tensor): Tensor to be gathered.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: Return a list containing data from the whole group if
in distributed environment, otherwise a list only containing
:attr:`data` itself.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> output = dist.all_gather(data)
>>> output
[tensor([0, 1])]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> output = dist.all_gather(data)
>>> output
[tensor([1, 2]), tensor([3, 4])] # Rank 0
[tensor([1, 2]), tensor([3, 4])] # Rank 1
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
gather_list = [
torch.empty_like(data, device=backend_device)
for _ in range(world_size)
]
torch_dist.all_gather(gather_list, data_on_device, group)
return cast_data_device(gather_list, input_device) # type: ignore
def gather(data: Tensor,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> List[Optional[Tensor]]:
"""Gather data from the whole group to ``dst`` process.
Note:
Calling ``gather`` in non-distributed environment dose nothing
and just returns a list containing :attr:`data` itself.
Note:
``NCCL`` backend does not support ``gather``.
Note:
Unlike PyTorch ``torch.distributed.gather``, :meth:`gather` in
MMEngine does not pass in an empty list ``gather_list`` and returns
the ``gather_list`` directly, which is more convenient. The difference
between their interfaces is as below:
- MMEngine: gather(data, dst, group) -> gather_list
- PyTorch: gather(data, gather_list, dst, group) -> None
Args:
data (Tensor): Tensor to be gathered. CUDA tensor is not supported.
dst (int): Destination rank. Defaults to 0.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: ``dst`` process will get a list of tensor gathering from
the whole group. Other process will get a empty list. If in
non-distributed environment, just return a list containing
:attr:`data` itself.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> output = dist.gather(data)
>>> output
[tensor([0, 1])]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> output = dist.gather(data)
>>> output
[tensor([1, 2]), tensor([3, 4])] # Rank 0
[] # Rank 1
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
if get_rank(group) == dst:
gather_list = [
torch.empty_like(data, device=backend_device)
for _ in range(world_size)
]
else:
gather_list = []
torch_dist.gather(data, gather_list, dst, group)
if get_rank(group) == dst:
return cast_data_device(gather_list, input_device) # type: ignore
else:
return gather_list
def broadcast(data: Tensor,
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Broadcast the data from ``src`` process to the whole group.
``data`` must have the same number of elements in all processes
participating in the collective.
Note:
Calling ``broadcast`` in non-distributed environment does nothing.
Args:
data (Tensor): Data to be sent if ``src`` is the rank of current
process, and data to be used to save received data otherwise.
src (int): Source rank. Defaults to 0.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = torch.arange(2, dtype=torch.int64)
>>> data
tensor([0, 1])
>>> dist.broadcast(data)
>>> data
tensor([0, 1])
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> data
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.broadcast(data)
>>> data
tensor([1, 2]) # Rank 0
tensor([1, 2]) # Rank 1
"""
if get_world_size(group) > 1:
if group is None:
group = get_default_group()
input_device = get_data_device(data)
backend_device = get_comm_device(group)
data_on_device = cast_data_device(data, backend_device)
# broadcast requires tensor is contiguous
data_on_device = data_on_device.contiguous() # type: ignore
torch_dist.broadcast(data_on_device, src, group)
if get_rank(group) != src:
cast_data_device(data_on_device, input_device, data)
def sync_random_seed(group: Optional[ProcessGroup] = None) -> int:
"""Synchronize a random seed to all processes.
In distributed sampling, different ranks should sample non-overlapped
data in the dataset. Therefore, this function is used to make sure that
each rank shuffles the data indices in the same order based
on the same seed. Then different ranks could use different indices
to select non-overlapped data from the same data list.
Args:
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
int: Random seed.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> seed = dist.sync_random_seed()
>>> seed # which a random number
587791752
>>> distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> seed = dist.sync_random_seed()
>>> seed
587791752 # Rank 0
587791752 # Rank 1
"""
seed = np.random.randint(2**31)
if get_world_size(group) == 1:
return seed
if group is None:
group = get_default_group()
backend_device = get_comm_device(group)
if get_rank(group) == 0:
random_num = torch.tensor(seed, dtype=torch.int32).to(backend_device)
else:
random_num = torch.tensor(0, dtype=torch.int32).to(backend_device)
torch_dist.broadcast(random_num, src=0, group=group)
return random_num.item()
def _object_to_tensor(obj: Any) -> Tuple[Tensor, Tensor]:
"""Serialize picklable python object to tensor."""
byte_storage = torch.ByteStorage.from_buffer(pickle.dumps(obj))
# Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor
# and specifying dtype. Otherwise, it will cause 100X slowdown.
# See: https://github.com/pytorch/pytorch/issues/65696
byte_tensor = torch.ByteTensor(byte_storage)
local_size = torch.LongTensor([byte_tensor.numel()])
return byte_tensor, local_size
def _tensor_to_object(tensor: Tensor, tensor_size: int) -> Any:
"""Deserialize tensor to picklable python object."""
buf = tensor.cpu().numpy().tobytes()[:tensor_size]
return pickle.loads(buf)
def _broadcast_object_list(object_list: List[Any],
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Broadcast picklable objects in ``object_list`` to the whole group.
Similar to :func:`broadcast`, but Python objects can be passed in. Note
that all objects in ``object_list`` must be picklable in order to be
broadcasted.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
my_rank = get_rank()
# Serialize object_list elements to tensors on src rank.
if my_rank == src:
tensor_list, size_list = zip(
*[_object_to_tensor(obj) for obj in object_list])
object_sizes_tensor = torch.cat(size_list)
else:
object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long)
# Current device selection.
# To preserve backwards compatibility, ``device`` is ``None`` by default.
# in which case we run current logic of device selection, i.e.
# ``current_device`` is CUDA if backend is NCCL otherwise CPU device. In
# the case it is not ``None`` we move the size and object tensors to be
# broadcasted to this device.
group_backend = get_backend(group)
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
current_device = torch.device('cpu')
is_hccl_backend = group_backend == 'hccl'
is_cncl_backend = group_backend == 'cncl'
if is_hccl_backend:
current_device = torch.device('npu', torch.npu.current_device())
object_sizes_tensor = object_sizes_tensor.to(current_device)
elif is_cncl_backend:
current_device = torch.device('mlu', torch.mlu.current_device())
object_sizes_tensor = object_sizes_tensor.to(current_device)
elif is_nccl_backend:
# See note about using torch.cuda.current_device() here in
# docstring. We cannot simply use my_rank since rank == device is
# not necessarily true.
current_device = torch.device('cuda', torch.cuda.current_device())
object_sizes_tensor = object_sizes_tensor.to(current_device)
# Broadcast object sizes
torch_dist.broadcast(object_sizes_tensor, src=src, group=group)
# Concatenate and broadcast serialized object tensors
if my_rank == src:
object_tensor = torch.cat(tensor_list)
else:
object_tensor = torch.empty(
torch.sum(object_sizes_tensor).int().item(),
dtype=torch.uint8,
)
if is_nccl_backend or is_hccl_backend or is_cncl_backend:
object_tensor = object_tensor.to(current_device)
torch_dist.broadcast(object_tensor, src=src, group=group)
# Deserialize objects using their stored sizes.
offset = 0
if my_rank != src:
for i, obj_size in enumerate(object_sizes_tensor):
obj_view = object_tensor[offset:offset + obj_size]
obj_view = obj_view.type(torch.uint8)
if obj_view.device != torch.device('cpu'):
obj_view = obj_view.cpu()
offset += obj_size
object_list[i] = _tensor_to_object(obj_view, obj_size)
def broadcast_object_list(data: List[Any],
src: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Broadcasts picklable objects in ``object_list`` to the whole group.
Similar to :func:`broadcast`, but Python objects can be passed in. Note
that all objects in ``object_list`` must be picklable in order to be
broadcasted.
Note:
Calling ``broadcast_object_list`` in non-distributed environment does
nothing.
Args:
data (List[Any]): List of input objects to broadcast.
Each object must be picklable. Only objects on the ``src`` rank
will be broadcast, but each rank must provide lists of equal sizes.
src (int): Source rank from which to broadcast ``object_list``.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.
device (``torch.device``, optional): If not None, the objects are
serialized and converted to tensors which are moved to the
``device`` before broadcasting. Default is ``None``.
Note:
For NCCL-based process groups, internal tensor representations of
objects must be moved to the GPU device before communication starts.
In this case, the used device is given by
``torch.cuda.current_device()`` and it is the user's responsibility to
ensure that this is correctly set so that each rank has an individual
GPU, via ``torch.cuda.set_device()``.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}]
>>> dist.broadcast_object_list(data)
>>> data
['foo', 12, {1: 2}]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> if dist.get_rank() == 0:
>>> # Assumes world_size of 3.
>>> data = ["foo", 12, {1: 2}] # any picklable object
>>> else:
>>> data = [None, None, None]
>>> dist.broadcast_object_list(data)
>>> data
["foo", 12, {1: 2}] # Rank 0
["foo", 12, {1: 2}] # Rank 1
"""
assert isinstance(data, list)
if get_world_size(group) > 1:
if group is None:
group = get_default_group()
if digit_version(TORCH_VERSION) >= digit_version(
'1.8.0') and not is_npu_available():
torch_dist.broadcast_object_list(data, src, group)
else:
_broadcast_object_list(data, src, group)
def all_reduce_dict(data: Dict[str, Tensor],
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
"""Reduces the dict across all machines in such a way that all get the
final result.
The code is modified from https://github.com/Megvii-
BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.
Args:
data (dict[str, Tensor]): Data to be reduced.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = {
'key1': torch.arange(2, dtype=torch.int64),
'key2': torch.arange(3, dtype=torch.int64)
}
>>> dist.all_reduce_dict(data)
>>> data
{'key1': tensor([0, 1]), 'key2': tensor([0, 1, 2])}
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> data = {
'key1': torch.arange(2, dtype=torch.int64),
'key2': torch.arange(3, dtype=torch.int64)
}
>>> dist.all_reduce_dict(data)
>>> data
{'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 0
{'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 1
"""
assert isinstance(data, dict)
world_size = get_world_size(group)
if world_size > 1:
if group is None:
group = get_default_group()
# ensure keys are consistent across processes
keys = sorted(data.keys())
tensor_shapes = [data[k].shape for k in keys]
tensor_sizes = [data[k].numel() for k in keys]
if digit_version(TORCH_VERSION) == digit_version('1.5.0'):
# `torch.cat` in torch1.5 can not concatenate different types so
# we fallback to convert them all to float type.
flatten_tensor = torch.cat(
[data[k].flatten().float() for k in keys])
else:
flatten_tensor = torch.cat([data[k].flatten() for k in keys])
all_reduce(flatten_tensor, op=op, group=group)
split_tensors = [
x.reshape(shape) for x, shape in zip(
torch.split(flatten_tensor, tensor_sizes), tensor_shapes)
]
for k, v in zip(keys, split_tensors):
data[k] = v
def _all_gather_object(object_list: List[Any],
obj: Any,
group: Optional[ProcessGroup] = None) -> None:
"""Gather picklable objects from the whole group into a list.
Similar to :func:`all_gather`, but Python objects can be passed in.
Note that the object must be picklable in order to be gathered.
Args:
object_list (list[Any]): Output list. It should be correctly sized as
the size of the group for this collective and will contain the
output.
object (Any): Pickable Python object to be broadcast from current
process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list``
will be unmodified.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
input_tensor, local_size = _object_to_tensor(obj)
group_backend = get_backend(group)
current_device = torch.device('cpu')
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
if is_nccl_backend:
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device('cuda', torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and
# index until the correct size when deserializing the tensors.
group_size = get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
torch_dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item())
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i:max_object_size * (i + 1)]
for i in range(group_size)
]
torch_dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device('cpu'):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)
def all_gather_object(data: Any,
group: Optional[ProcessGroup] = None) -> List[Any]:
"""Gather picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the
object must be picklable in order to be gathered.
Note:
Calling ``all_gather_object`` in non-distributed environment does
nothing and just returns a list containing :attr:`data` itself.
Note:
Unlike PyTorch ``torch.distributed.all_gather_object``,
:meth:`all_gather_object` in MMEngine does not pass in an empty list
``gather_list`` and returns the ``gather_list`` directly, which is
more convenient. The difference between their interfaces is as below:
- MMEngine: all_gather_object(data, group) -> gather_list
- PyTorch: all_gather_object(gather_list, data, group) -> None
Args:
data (Any): Pickable Python object to be broadcast from current
process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Tensor]: Return a list containing data from the whole group if
in distributed environment, otherwise a list only containing
:attr:`data` itself.
Note:
For NCCL-based process groups, internal tensor representations
of objects must be moved to the GPU device before communication starts.
In this case, the used device is given by
``torch.cuda.current_device()`` and it is the user's responsibility to
ensure that this is correctly set so that each rank has an individual
GPU, via ``torch.cuda.set_device()``.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}] # any picklable object
>>> gather_objects = dist.all_gather_object(data[dist.get_rank()])
>>> output
['foo']
>>> # distributed environment
>>> # We have 3 process groups, 3 ranks.
>>> output = dist.all_gather_object(data[dist.get_rank()])
>>> output
['foo', 12, {1: 2}] # Rank 0
['foo', 12, {1: 2}] # Rank 1
['foo', 12, {1: 2}] # Rank 2
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
gather_list = [None] * world_size
if digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
torch_dist.all_gather_object(gather_list, data, group)
else:
_all_gather_object(gather_list, data, group)
return gather_list
def _validate_output_list_for_rank(my_rank: int, dst: int,
gather_list: Optional[list]) -> None:
"""Validate whether ``gather_list`` is None in non-dst ranks."""
if dst == my_rank:
if not gather_list:
raise ValueError(
'Argument ``gather_list`` must be specified on destination '
'rank.')
elif gather_list:
raise ValueError('Argument ``gather_list`` must NOT be specified '
'on non-destination ranks.')
def _gather_object(obj: Any,
object_gather_list=None,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> None:
"""Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that
the object must be picklable in order to be gathered.
Args:
obj (Any): Input object. Must be picklable.
object_gather_list (list[Any], optional): Output list. On the ``dst``
rank, it should be correctly sized as the size of the group for
this collective and will contain the output. Must be ``None`` on
non-dst ranks. Defaults to None.
dst (int): Destination rank. Defaults to 0.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
"""
if torch_dist.distributed_c10d._rank_not_in_group(group):
return
# Ensure object_gather_list is specified appopriately.
my_rank = get_rank()
_validate_output_list_for_rank(my_rank, dst, object_gather_list)
input_tensor, local_size = _object_to_tensor(obj)
group_backend = get_backend(group)
current_device = torch.device('cpu')
is_nccl_backend = group_backend == torch_dist.Backend.NCCL
if is_nccl_backend:
current_device = torch.device('cuda', torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and
# index until the correct size when deserializing the tensors.
group_size = get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes. An all-gather is needed here despite this being a
# gather, since each rank needs to broadcast a tensor of the same (maximal)
# size.
torch_dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item())
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
# Avoid populating output tensors if the result won't be gathered on this
# rank.
if my_rank == dst:
coalesced_output_tensor = torch.empty(
max_object_size * group_size,
dtype=torch.uint8,
device=current_device)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i:max_object_size *
(i + 1)] for i in range(group_size)
]
# All ranks call gather with equal-sized tensors.
torch_dist.gather(
input_tensor,
gather_list=output_tensors if my_rank == dst else None,
dst=dst,
group=group,
)
if my_rank != dst:
return
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
tensor_size = object_size_list[i]
object_gather_list[i] = _tensor_to_object(tensor, tensor_size)
def gather_object(data: Any,
dst: int = 0,
group: Optional[ProcessGroup] = None) -> Optional[List[Any]]:
"""Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that
the object must be picklable in order to be gathered.
Note:
``NCCL backend`` does not support ``gather_object``.
Note:
Unlike PyTorch ``torch.distributed.gather_object``,
:meth:`gather_object` in MMEngine does not pass in an empty list
``gather_list`` and returns the ``gather_list`` directly, which is
more convenient. The difference between their interfaces is as below:
- MMEngine: gather_object(data, dst, group) -> gather_list
- PyTorch: gather_object(data, gather_list, data, group) -> None
Args:
data (Any): Input object. Must be picklable.
dst (int): Destination rank. Defaults to 0.
group: (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Returns:
list[Any]. On the ``dst`` rank, return ``gather_list`` which contains
the output of the collective.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = ['foo', 12, {1: 2}] # any picklable object
>>> gather_objects = dist.gather_object(data[dist.get_rank()])
>>> output
['foo']
>>> # distributed environment
>>> # We have 3 process groups, 3 ranks.
>>> dist.gather_object(gather_objects[dist.get_rank()], dst=0)
>>> output
['foo', 12, {1: 2}] # Rank 0
None # Rank 1
None # Rank 2
"""
world_size = get_world_size(group)
if world_size == 1:
return [data]
if group is None:
group = get_default_group()
gather_list = [None] * world_size if get_rank(group) == dst else None
if digit_version(TORCH_VERSION) >= digit_version('1.8.0'):
torch_dist.gather_object(data, gather_list, dst, group)
else:
_gather_object(data, gather_list, dst, group)
return gather_list
def collect_results(results: list,
size: int,
device: str = 'cpu',
tmpdir: Optional[str] = None) -> Optional[list]:
"""Collected results in distributed environments.
Args:
results (list[object]): Result list containing result parts to be
collected. Each item of ``result_part`` should be a picklable
object.
size (int): Size of the results, commonly equal to length of
the results.
device (str): Device name. Optional values are 'cpu', 'gpu' or 'npu'.
tmpdir (str | None): Temporal directory for collected results to
store. If set to None, it will create a temporal directory for it.
``tmpdir`` should be None when device is 'gpu' or 'npu'.
Defaults to None.
Returns:
list or None: The collected results.
Examples:
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> import mmengine.dist as dist
>>> if dist.get_rank() == 0:
data = ['foo', {1: 2}]
else:
data = [24, {'a': 'b'}]
>>> size = 4
>>> output = dist.collect_results(data, size, device='cpu')
>>> output
['foo', 24, {1: 2}, {'a': 'b'}] # rank 0
None # rank 1
"""
if device not in ['gpu', 'cpu', 'npu']:
raise NotImplementedError(
f"device must be 'cpu' , 'gpu' or 'npu', but got {device}")
if device == 'gpu' or device == 'npu':
assert tmpdir is None, f'tmpdir should be None when device is {device}'
return _collect_results_device(results, size)
else:
return collect_results_cpu(results, size, tmpdir)
def collect_results_cpu(result_part: list,
size: int,
tmpdir: Optional[str] = None) -> Optional[list]:
"""Collect results under cpu mode.
On cpu mode, this function will save the results on different gpus to
``tmpdir`` and collect them by the rank 0 worker.
Args:
result_part (list): Result list containing result parts
to be collected. Each item of ``result_part`` should be a picklable
object.
size (int): Size of the results, commonly equal to length of
the results.
tmpdir (str | None): Temporal directory for collected results to
store. If set to None, it will create a random temporal directory
for it. Defaults to None.
Returns:
list or None: The collected results.
Examples:
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> import mmengine.dist as dist
>>> if dist.get_rank() == 0:
data = ['foo', {1: 2}]
else:
data = [24, {'a': 'b'}]
>>> size = 4
>>> output = dist.collect_results_cpu(data, size)
>>> output
['foo', 24, {1: 2}, {'a': 'b'}] # rank 0
None # rank 1
"""
rank, world_size = get_dist_info()
if world_size == 1:
return result_part[:size]
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8)
if rank == 0:
mmengine.mkdir_or_exist('.dist_test')
tmpdir = tempfile.mkdtemp(dir='.dist_test')
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8)
dir_tensor[:len(tmpdir)] = tmpdir
broadcast(dir_tensor, 0)
tmpdir = dir_tensor.numpy().tobytes().decode().rstrip()
else:
mmengine.mkdir_or_exist(tmpdir)
# dump the part result to the dir
with open(osp.join(tmpdir, f'part_{rank}.pkl'), 'wb') as f: # type: ignore
pickle.dump(result_part, f, protocol=2)
barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
path = osp.join(tmpdir, f'part_{i}.pkl') # type: ignore
if not osp.exists(path):
raise FileNotFoundError(
f'{tmpdir} is not an shared directory for '
f'rank {i}, please make sure {tmpdir} is a shared '
'directory for all ranks!')
with open(path, 'rb') as f:
part_list.append(pickle.load(f))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir) # type: ignore
return ordered_results
def _collect_results_device(result_part: list, size: int) -> Optional[list]:
"""Collect results under gpu or npu mode."""
rank, world_size = get_dist_info()
if world_size == 1:
return result_part[:size]
# gather all result part. Note that NCCL does not support gather so use
# all_gather_object instead.
part_list = all_gather_object(result_part)
if rank == 0:
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
return ordered_results
else:
return None
def collect_results_gpu(result_part: list, size: int) -> Optional[list]:
"""Collect results under gpu mode.
On gpu mode, this function will encode results to gpu tensors and use gpu
communication for results collection.
Args:
result_part (list[object]): Result list containing result parts
to be collected. Each item of ``result_part`` should be a picklable
object.
size (int): Size of the results, commonly equal to length of
the results.
Returns:
list or None: The collected results.
Examples:
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> import mmengine.dist as dist
>>> if dist.get_rank() == 0:
data = ['foo', {1: 2}]
else:
data = [24, {'a': 'b'}]
>>> size = 4
>>> output = dist.collect_results_gpu(data, size)
>>> output
['foo', 24, {1: 2}, {'a': 'b'}] # rank 0
None # rank 1
"""
return _collect_results_device(result_part, size)
def _all_reduce_coalesced(tensors: List[torch.Tensor],
bucket_size_mb: int = -1,
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
"""All-reduce a sequence of tensors as a whole.
Args:
tensors (List[torch.Tensor]): A sequence of tensors to be
all-reduced.
bucket_size_mb (int): The limit of each chunk in megabytes
for grouping tensors into chunks. Defaults to -1.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
"""
if bucket_size_mb > 0:
bucket_size_bytes = bucket_size_mb * 1024 * 1024
buckets = _take_tensors(tensors, bucket_size_bytes)
else:
buckets = OrderedDict()
for tensor in tensors:
tp = tensor.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(tensor)
buckets = buckets.values()
for bucket in buckets:
flat_tensors = _flatten_dense_tensors(bucket)
all_reduce(flat_tensors, op=op, group=group)
for tensor, synced in zip(
bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
tensor.copy_(synced)
def all_reduce_params(params: Union[List, Generator[torch.Tensor, None, None]],
coalesce: bool = True,
bucket_size_mb: int = -1,
op: str = 'sum',
group: Optional[ProcessGroup] = None) -> None:
"""All-reduce parameters.
Args:
params (List or Generator[torch.Tensor, None, None]): List of
parameters or buffers of a model.
coalesce (bool, optional): Whether to reduce parameters as a whole.
Defaults to True.
bucket_size_mb (int, optional): Size of bucket, the unit is MB.
Defaults to -1.
op (str): Operation to reduce data. Defaults to 'sum'. Optional values
are 'sum', 'mean' and 'produce', 'min', 'max', 'band', 'bor' and
'bxor'.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Defaults to None.
Examples:
>>> import torch
>>> import mmengine.dist as dist
>>> # non-distributed environment
>>> data = [torch.arange(2), torch.arange(3)]
>>> dist.all_reduce_params(data)
>>> data
[tensor([0, 1]), tensor([0, 1, 2])]
>>> # distributed environment
>>> # We have 2 process groups, 2 ranks.
>>> if dist.get_rank() == 0:
... data = [torch.tensor([1, 2]), torch.tensor([3, 4])]
... else:
... data = [torch.tensor([2, 3]), torch.tensor([4, 5])]
>>> dist.all_reduce_params(data)
>>> data
[torch.tensor([3, 5]), torch.tensor([7, 9])]
"""
world_size = get_world_size(group)
if world_size == 1:
return
params_data = [param.data for param in params]
if coalesce:
_all_reduce_coalesced(params_data, bucket_size_mb, op=op, group=group)
else:
for tensor in params_data:
all_reduce(tensor, op=op, group=group)
|