Spaces:
Build error
Build error
File size: 3,069 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Optional
import torch
try:
import torch_npu # noqa: F401
import torch_npu.npu.utils as npu_utils
# Enable operator support for dynamic shape and
# binary operator support on the NPU.
npu_jit_compile = bool(os.getenv('NPUJITCompile', False))
torch.npu.set_compile_mode(jit_compile=npu_jit_compile)
IS_NPU_AVAILABLE = hasattr(torch, 'npu') and torch.npu.is_available()
except Exception:
IS_NPU_AVAILABLE = False
try:
import torch_dipu # noqa: F401
IS_DIPU_AVAILABLE = True
except Exception:
IS_DIPU_AVAILABLE = False
def get_max_cuda_memory(device: Optional[torch.device] = None) -> int:
"""Returns the maximum GPU memory occupied by tensors in megabytes (MB) for
a given device. By default, this returns the peak allocated memory since
the beginning of this program.
Args:
device (torch.device, optional): selected device. Returns
statistic for the current device, given by
:func:`~torch.cuda.current_device`, if ``device`` is None.
Defaults to None.
Returns:
int: The maximum GPU memory occupied by tensors in megabytes
for a given device.
"""
mem = torch.cuda.max_memory_allocated(device=device)
mem_mb = torch.tensor([int(mem) // (1024 * 1024)],
dtype=torch.int,
device=device)
torch.cuda.reset_peak_memory_stats()
return int(mem_mb.item())
def is_cuda_available() -> bool:
"""Returns True if cuda devices exist."""
return torch.cuda.is_available()
def is_npu_available() -> bool:
"""Returns True if Ascend PyTorch and npu devices exist."""
return IS_NPU_AVAILABLE
def is_mlu_available() -> bool:
"""Returns True if Cambricon PyTorch and mlu devices exist."""
return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available()
def is_mps_available() -> bool:
"""Return True if mps devices exist.
It's specialized for mac m1 chips and require torch version 1.12 or higher.
"""
return hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
def is_dipu_available() -> bool:
return IS_DIPU_AVAILABLE
def is_npu_support_full_precision() -> bool:
"""Returns True if npu devices support full precision training."""
version_of_support_full_precision = 220
return IS_NPU_AVAILABLE and npu_utils.get_soc_version(
) >= version_of_support_full_precision
DEVICE = 'cpu'
if is_npu_available():
DEVICE = 'npu'
elif is_cuda_available():
DEVICE = 'cuda'
elif is_mlu_available():
DEVICE = 'mlu'
elif is_mps_available():
DEVICE = 'mps'
elif is_dipu_available():
DEVICE = 'dipu'
def get_device() -> str:
"""Returns the currently existing device type.
Returns:
str: cuda | npu | mlu | mps | cpu.
"""
return DEVICE
|