Spaces:
Build error
Build error
File size: 20,804 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import copy
import logging
import math
from collections import defaultdict
from typing import List, Sequence, Tuple, Union
import numpy as np
from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
from mmengine.logging import print_log
from mmengine.registry import DATASETS
from .base_dataset import BaseDataset, force_full_init
@DATASETS.register_module()
class ConcatDataset(_ConcatDataset):
"""A wrapper of concatenated dataset.
Same as ``torch.utils.data.dataset.ConcatDataset`` and support lazy_init.
Note:
``ConcatDataset`` should not inherit from ``BaseDataset`` since
``get_subset`` and ``get_subset_`` could produce ambiguous meaning
sub-dataset which conflicts with original dataset. If you want to use
a sub-dataset of ``ConcatDataset``, you should set ``indices``
arguments for wrapped dataset which inherit from ``BaseDataset``.
Args:
datasets (Sequence[BaseDataset] or Sequence[dict]): A list of datasets
which will be concatenated.
lazy_init (bool, optional): Whether to load annotation during
instantiation. Defaults to False.
ignore_keys (List[str] or str): Ignore the keys that can be
unequal in `dataset.metainfo`. Defaults to None.
`New in version 0.3.0.`
"""
def __init__(self,
datasets: Sequence[Union[BaseDataset, dict]],
lazy_init: bool = False,
ignore_keys: Union[str, List[str], None] = None):
self.datasets: List[BaseDataset] = []
for i, dataset in enumerate(datasets):
if isinstance(dataset, dict):
self.datasets.append(DATASETS.build(dataset))
elif isinstance(dataset, BaseDataset):
self.datasets.append(dataset)
else:
raise TypeError(
'elements in datasets sequence should be config or '
f'`BaseDataset` instance, but got {type(dataset)}')
if ignore_keys is None:
self.ignore_keys = []
elif isinstance(ignore_keys, str):
self.ignore_keys = [ignore_keys]
elif isinstance(ignore_keys, list):
self.ignore_keys = ignore_keys
else:
raise TypeError('ignore_keys should be a list or str, '
f'but got {type(ignore_keys)}')
meta_keys: set = set()
for dataset in self.datasets:
meta_keys |= dataset.metainfo.keys()
# Only use metainfo of first dataset.
self._metainfo = self.datasets[0].metainfo
for i, dataset in enumerate(self.datasets, 1):
for key in meta_keys:
if key in self.ignore_keys:
continue
if key not in dataset.metainfo:
raise ValueError(
f'{key} does not in the meta information of '
f'the {i}-th dataset')
first_type = type(self._metainfo[key])
cur_type = type(dataset.metainfo[key])
if first_type is not cur_type: # type: ignore
raise TypeError(
f'The type {cur_type} of {key} in the {i}-th dataset '
'should be the same with the first dataset '
f'{first_type}')
if (isinstance(self._metainfo[key], np.ndarray)
and not np.array_equal(self._metainfo[key],
dataset.metainfo[key])
or self._metainfo[key] != dataset.metainfo[key]):
raise ValueError(
f'The meta information of the {i}-th dataset does not '
'match meta information of the first dataset')
self._fully_initialized = False
if not lazy_init:
self.full_init()
@property
def metainfo(self) -> dict:
"""Get the meta information of the first dataset in ``self.datasets``.
Returns:
dict: Meta information of first dataset.
"""
# Prevent `self._metainfo` from being modified by outside.
return copy.deepcopy(self._metainfo)
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
for d in self.datasets:
d.full_init()
# Get the cumulative sizes of `self.datasets`. For example, the length
# of `self.datasets` is [2, 3, 4], the cumulative sizes is [2, 5, 9]
super().__init__(self.datasets)
self._fully_initialized = True
@force_full_init
def _get_ori_dataset_idx(self, idx: int) -> Tuple[int, int]:
"""Convert global idx to local index.
Args:
idx (int): Global index of ``RepeatDataset``.
Returns:
Tuple[int, int]: The index of ``self.datasets`` and the local
index of data.
"""
if idx < 0:
if -idx > len(self):
raise ValueError(
f'absolute value of index({idx}) should not exceed dataset'
f'length({len(self)}).')
idx = len(self) + idx
# Get `dataset_idx` to tell idx belongs to which dataset.
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
# Get the inner index of single dataset.
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return dataset_idx, sample_idx
@force_full_init
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
dataset_idx, sample_idx = self._get_ori_dataset_idx(idx)
return self.datasets[dataset_idx].get_data_info(sample_idx)
@force_full_init
def __len__(self):
return super().__len__()
def __getitem__(self, idx):
if not self._fully_initialized:
print_log(
'Please call `full_init` method manually to '
'accelerate the speed.',
logger='current',
level=logging.WARNING)
self.full_init()
dataset_idx, sample_idx = self._get_ori_dataset_idx(idx)
return self.datasets[dataset_idx][sample_idx]
def get_subset_(self, indices: Union[List[int], int]) -> None:
"""Not supported in ``ConcatDataset`` for the ambiguous meaning of sub-
dataset."""
raise NotImplementedError(
'`ConcatDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `ConcatDataset`.')
def get_subset(self, indices: Union[List[int], int]) -> 'BaseDataset':
"""Not supported in ``ConcatDataset`` for the ambiguous meaning of sub-
dataset."""
raise NotImplementedError(
'`ConcatDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `ConcatDataset`.')
@DATASETS.register_module()
class RepeatDataset:
"""A wrapper of repeated dataset.
The length of repeated dataset will be `times` larger than the original
dataset. This is useful when the data loading time is long but the dataset
is small. Using RepeatDataset can reduce the data loading time between
epochs.
Note:
``RepeatDataset`` should not inherit from ``BaseDataset`` since
``get_subset`` and ``get_subset_`` could produce ambiguous meaning
sub-dataset which conflicts with original dataset. If you want to use
a sub-dataset of ``RepeatDataset``, you should set ``indices``
arguments for wrapped dataset which inherit from ``BaseDataset``.
Args:
dataset (BaseDataset or dict): The dataset to be repeated.
times (int): Repeat times.
lazy_init (bool): Whether to load annotation during
instantiation. Defaults to False.
"""
def __init__(self,
dataset: Union[BaseDataset, dict],
times: int,
lazy_init: bool = False):
self.dataset: BaseDataset
if isinstance(dataset, dict):
self.dataset = DATASETS.build(dataset)
elif isinstance(dataset, BaseDataset):
self.dataset = dataset
else:
raise TypeError(
'elements in datasets sequence should be config or '
f'`BaseDataset` instance, but got {type(dataset)}')
self.times = times
self._metainfo = self.dataset.metainfo
self._fully_initialized = False
if not lazy_init:
self.full_init()
@property
def metainfo(self) -> dict:
"""Get the meta information of the repeated dataset.
Returns:
dict: The meta information of repeated dataset.
"""
return copy.deepcopy(self._metainfo)
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
self.dataset.full_init()
self._ori_len = len(self.dataset)
self._fully_initialized = True
@force_full_init
def _get_ori_dataset_idx(self, idx: int) -> int:
"""Convert global index to local index.
Args:
idx: Global index of ``RepeatDataset``.
Returns:
idx (int): Local index of data.
"""
return idx % self._ori_len
@force_full_init
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
sample_idx = self._get_ori_dataset_idx(idx)
return self.dataset.get_data_info(sample_idx)
def __getitem__(self, idx):
if not self._fully_initialized:
print_log(
'Please call `full_init` method manually to accelerate the '
'speed.',
logger='current',
level=logging.WARNING)
self.full_init()
sample_idx = self._get_ori_dataset_idx(idx)
return self.dataset[sample_idx]
@force_full_init
def __len__(self):
return self.times * self._ori_len
def get_subset_(self, indices: Union[List[int], int]) -> None:
"""Not supported in ``RepeatDataset`` for the ambiguous meaning of sub-
dataset."""
raise NotImplementedError(
'`RepeatDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `RepeatDataset`.')
def get_subset(self, indices: Union[List[int], int]) -> 'BaseDataset':
"""Not supported in ``RepeatDataset`` for the ambiguous meaning of sub-
dataset."""
raise NotImplementedError(
'`RepeatDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `RepeatDataset`.')
@DATASETS.register_module()
class ClassBalancedDataset:
"""A wrapper of class balanced dataset.
Suitable for training on class imbalanced datasets like LVIS. Following
the sampling strategy in the `paper <https://arxiv.org/abs/1908.03195>`_,
in each epoch, an image may appear multiple times based on its
"repeat factor".
The repeat factor for an image is a function of the frequency the rarest
category labeled in that image. The "frequency of category c" in [0, 1]
is defined by the fraction of images in the training set (without repeats)
in which category c appears.
The dataset needs to instantiate :meth:`get_cat_ids` to support
ClassBalancedDataset.
The repeat factor is computed as followed.
1. For each category c, compute the fraction # of images
that contain it: :math:`f(c)`
2. For each category c, compute the category-level repeat factor:
:math:`r(c) = max(1, sqrt(t/f(c)))`
3. For each image I, compute the image-level repeat factor:
:math:`r(I) = max_{c in I} r(c)`
Note:
``ClassBalancedDataset`` should not inherit from ``BaseDataset``
since ``get_subset`` and ``get_subset_`` could produce ambiguous
meaning sub-dataset which conflicts with original dataset. If you
want to use a sub-dataset of ``ClassBalancedDataset``, you should set
``indices`` arguments for wrapped dataset which inherit from
``BaseDataset``.
Args:
dataset (BaseDataset or dict): The dataset to be repeated.
oversample_thr (float): frequency threshold below which data is
repeated. For categories with ``f_c >= oversample_thr``, there is
no oversampling. For categories with ``f_c < oversample_thr``, the
degree of oversampling following the square-root inverse frequency
heuristic above.
lazy_init (bool, optional): whether to load annotation during
instantiation. Defaults to False
"""
def __init__(self,
dataset: Union[BaseDataset, dict],
oversample_thr: float,
lazy_init: bool = False):
if isinstance(dataset, dict):
self.dataset = DATASETS.build(dataset)
elif isinstance(dataset, BaseDataset):
self.dataset = dataset
else:
raise TypeError(
'elements in datasets sequence should be config or '
f'`BaseDataset` instance, but got {type(dataset)}')
self.oversample_thr = oversample_thr
self._metainfo = self.dataset.metainfo
self._fully_initialized = False
if not lazy_init:
self.full_init()
@property
def metainfo(self) -> dict:
"""Get the meta information of the repeated dataset.
Returns:
dict: The meta information of repeated dataset.
"""
return copy.deepcopy(self._metainfo)
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
self.dataset.full_init()
# Get repeat factors for each image.
repeat_factors = self._get_repeat_factors(self.dataset,
self.oversample_thr)
# Repeat dataset's indices according to repeat_factors. For example,
# if `repeat_factors = [1, 2, 3]`, and the `len(dataset) == 3`,
# the repeated indices will be [1, 2, 2, 3, 3, 3].
repeat_indices = []
for dataset_index, repeat_factor in enumerate(repeat_factors):
repeat_indices.extend([dataset_index] * math.ceil(repeat_factor))
self.repeat_indices = repeat_indices
self._fully_initialized = True
def _get_repeat_factors(self, dataset: BaseDataset,
repeat_thr: float) -> List[float]:
"""Get repeat factor for each images in the dataset.
Args:
dataset (BaseDataset): The dataset.
repeat_thr (float): The threshold of frequency. If an image
contains the categories whose frequency below the threshold,
it would be repeated.
Returns:
List[float]: The repeat factors for each images in the dataset.
"""
# 1. For each category c, compute the fraction # of images
# that contain it: f(c)
category_freq: defaultdict = defaultdict(float)
num_images = len(dataset)
for idx in range(num_images):
cat_ids = set(self.dataset.get_cat_ids(idx))
for cat_id in cat_ids:
category_freq[cat_id] += 1
for k, v in category_freq.items():
assert v > 0, f'caterogy {k} does not contain any images'
category_freq[k] = v / num_images
# 2. For each category c, compute the category-level repeat factor:
# r(c) = max(1, sqrt(t/f(c)))
category_repeat = {
cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq))
for cat_id, cat_freq in category_freq.items()
}
# 3. For each image I and its labels L(I), compute the image-level
# repeat factor:
# r(I) = max_{c in L(I)} r(c)
repeat_factors = []
for idx in range(num_images):
# the length of `repeat_factors` need equal to the length of
# dataset. Hence, if the `cat_ids` is empty,
# the repeat_factor should be 1.
repeat_factor: float = 1.
cat_ids = set(self.dataset.get_cat_ids(idx))
if len(cat_ids) != 0:
repeat_factor = max(
{category_repeat[cat_id]
for cat_id in cat_ids})
repeat_factors.append(repeat_factor)
return repeat_factors
@force_full_init
def _get_ori_dataset_idx(self, idx: int) -> int:
"""Convert global index to local index.
Args:
idx (int): Global index of ``RepeatDataset``.
Returns:
int: Local index of data.
"""
return self.repeat_indices[idx]
@force_full_init
def get_cat_ids(self, idx: int) -> List[int]:
"""Get category ids of class balanced dataset by index.
Args:
idx (int): Index of data.
Returns:
List[int]: All categories in the image of specified index.
"""
sample_idx = self._get_ori_dataset_idx(idx)
return self.dataset.get_cat_ids(sample_idx)
@force_full_init
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the dataset.
"""
sample_idx = self._get_ori_dataset_idx(idx)
return self.dataset.get_data_info(sample_idx)
def __getitem__(self, idx):
if not self._fully_initialized:
print_log(
'Please call `full_init` method manually to accelerate '
'the speed.',
logger='current',
level=logging.WARNING)
self.full_init()
ori_index = self._get_ori_dataset_idx(idx)
return self.dataset[ori_index]
@force_full_init
def __len__(self):
return len(self.repeat_indices)
def get_subset_(self, indices: Union[List[int], int]) -> None:
"""Not supported in ``ClassBalancedDataset`` for the ambiguous meaning
of sub-dataset."""
raise NotImplementedError(
'`ClassBalancedDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `ClassBalancedDataset`.')
def get_subset(self, indices: Union[List[int], int]) -> 'BaseDataset':
"""Not supported in ``ClassBalancedDataset`` for the ambiguous meaning
of sub-dataset."""
raise NotImplementedError(
'`ClassBalancedDataset` dose not support `get_subset` and '
'`get_subset_` interfaces because this will lead to ambiguous '
'implementation of some methods. If you want to use `get_subset` '
'or `get_subset_` interfaces, please use them in the wrapped '
'dataset first and then use `ClassBalancedDataset`.')
|