File size: 34,021 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import functools
import gc
import logging
import pickle
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union

import numpy as np
from torch.utils.data import Dataset

from mmengine.fileio import join_path, list_from_file, load
from mmengine.logging import print_log
from mmengine.registry import TRANSFORMS
from mmengine.utils import is_abs

class Compose:
    """Compose multiple transforms sequentially.

    Args:
        transforms (Sequence[dict, callable], optional): Sequence of transform
            object or config dict to be composed.
    """

    def __init__(self, transforms: Optional[Sequence[Union[dict, Callable]]]):
        self.transforms: List[Callable] = []

        if transforms is None:
            transforms = []

        for transform in transforms:
            # `Compose` can be built with config dict with type and
            # corresponding arguments.
            if isinstance(transform, dict):
                transform = TRANSFORMS.build(transform)
                if not callable(transform):
                    raise TypeError(f'transform should be a callable object, '
                                    f'but got {type(transform)}')
                self.transforms.append(transform)
            elif callable(transform):
                self.transforms.append(transform)
            else:
                raise TypeError(
                    f'transform must be a callable object or dict, '
                    f'but got {type(transform)}')

    def __call__(self, data: dict) -> Optional[dict]:
        """Call function to apply transforms sequentially.

        Args:
            data (dict): A result dict contains the data to transform.

        Returns:
           dict: Transformed data.
        """
        for t in self.transforms:
            data = t(data)
            # The transform will return None when it failed to load images or
            # cannot find suitable augmentation parameters to augment the data.
            # Here we simply return None if the transform returns None and the
            # dataset will handle it by randomly selecting another data sample.
            if data is None:
                return None
        return data

    def __repr__(self):
        """Print ``self.transforms`` in sequence.

        Returns:
            str: Formatted string.
        """
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += f'    {t}'
        format_string += '\n)'
        return format_string


def force_full_init(old_func: Callable) -> Any:
    """Those methods decorated by ``force_full_init`` will be forced to call
    ``full_init`` if the instance has not been fully initiated.

    Args:
        old_func (Callable): Decorated function, make sure the first arg is an
            instance with ``full_init`` method.

    Returns:
        Any: Depends on old_func.
    """

    @functools.wraps(old_func)
    def wrapper(obj: object, *args, **kwargs):
        # The instance must have `full_init` method.
        if not hasattr(obj, 'full_init'):
            raise AttributeError(f'{type(obj)} does not have full_init '
                                 'method.')
        # If instance does not have `_fully_initialized` attribute or
        # `_fully_initialized` is False, call `full_init` and set
        # `_fully_initialized` to True
        if not getattr(obj, '_fully_initialized', False):
            print_log(
                f'Attribute `_fully_initialized` is not defined in '
                f'{type(obj)} or `type(obj)._fully_initialized is '
                'False, `full_init` will be called and '
                f'{type(obj)}._fully_initialized will be set to True',
                logger='current',
                level=logging.WARNING)
            obj.full_init()  # type: ignore
            obj._fully_initialized = True  # type: ignore

        return old_func(obj, *args, **kwargs)

    return wrapper


class BaseDataset(Dataset):
    r"""BaseDataset for open source projects in OpenMMLab.

    The annotation format is shown as follows.

    .. code-block:: none

        {
            "metainfo":
            {
              "dataset_type": "test_dataset",
              "task_name": "test_task"
            },
            "data_list":
            [
              {
                "img_path": "test_img.jpg",
                "height": 604,
                "width": 640,
                "instances":
                [
                  {
                    "bbox": [0, 0, 10, 20],
                    "bbox_label": 1,
                    "mask": [[0,0],[0,10],[10,20],[20,0]],
                    "extra_anns": [1,2,3]
                  },
                  {
                    "bbox": [10, 10, 110, 120],
                    "bbox_label": 2,
                    "mask": [[10,10],[10,110],[110,120],[120,10]],
                    "extra_anns": [4,5,6]
                  }
                ]
              },
            ]
        }

    Args:
        ann_file (str, optional): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to ''.
        data_prefix (dict): Prefix for training data. Defaults to
            dict(img_path='').
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``Basedataset`` can skip load annotations to
            save time by set ``lazy_init=True``. Defaults to False.
        max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.

    Note:
        BaseDataset collects meta information from ``annotation file`` (the
        lowest priority), ``BaseDataset.METAINFO``(medium) and ``metainfo
        parameter`` (highest) passed to constructors. The lower priority meta
        information will be overwritten by higher one.

    Note:
        Dataset wrapper such as ``ConcatDataset``, ``RepeatDataset`` .etc.
        should not inherit from ``BaseDataset`` since ``get_subset`` and
        ``get_subset_`` could produce ambiguous meaning sub-dataset which
        conflicts with original dataset.

    Examples:
        >>> # Assume the annotation file is given above.
        >>> class CustomDataset(BaseDataset):
        >>>     METAINFO: dict = dict(task_name='custom_task',
        >>>                           dataset_type='custom_type')
        >>> metainfo=dict(task_name='custom_task_name')
        >>> custom_dataset = CustomDataset(
        >>>                      'path/to/ann_file',
        >>>                      metainfo=metainfo)
        >>> # meta information of annotation file will be overwritten by
        >>> # `CustomDataset.METAINFO`. The merged meta information will
        >>> # further be overwritten by argument `metainfo`.
        >>> custom_dataset.metainfo
        {'task_name': custom_task_name, dataset_type: custom_type}
    """

    METAINFO: dict = dict()
    _fully_initialized: bool = False

    def __init__(self,
                 ann_file: Optional[str] = '',
                 metainfo: Optional[dict] = None,
                 data_root: Optional[str] = '',
                 data_prefix: dict = dict(img_path=''),
                 filter_cfg: Optional[dict] = None,
                 indices: Optional[Union[int, Sequence[int]]] = None,
                 serialize_data: bool = True,
                 pipeline: List[Union[dict, Callable]] = [],
                 test_mode: bool = False,
                 lazy_init: bool = False,
                 max_refetch: int = 1000):
        self.ann_file = ann_file
        self._metainfo = self._load_metainfo(copy.deepcopy(metainfo))
        self.data_root = data_root
        self.data_prefix = copy.copy(data_prefix)
        self.filter_cfg = copy.deepcopy(filter_cfg)
        self._indices = indices
        self.serialize_data = serialize_data
        self.test_mode = test_mode
        self.max_refetch = max_refetch
        self.data_list: List[dict] = []
        self.data_bytes: np.ndarray

        # Join paths.
        self._join_prefix()

        # Build pipeline.
        self.pipeline = Compose(pipeline)
        # Full initialize the dataset.
        if not lazy_init:
            self.full_init()

    @force_full_init
    def get_data_info(self, idx: int) -> dict:
        """Get annotation by index and automatically call ``full_init`` if the
        dataset has not been fully initialized.

        Args:
            idx (int): The index of data.

        Returns:
            dict: The idx-th annotation of the dataset.
        """
        if self.serialize_data:
            start_addr = 0 if idx == 0 else self.data_address[idx - 1].item()
            end_addr = self.data_address[idx].item()
            bytes = memoryview(
                self.data_bytes[start_addr:end_addr])  # type: ignore
            data_info = pickle.loads(bytes)  # type: ignore
        else:
            data_info = copy.deepcopy(self.data_list[idx])
        # Some codebase needs `sample_idx` of data information. Here we convert
        # the idx to a positive number and save it in data information.
        if idx >= 0:
            data_info['sample_idx'] = idx
        else:
            data_info['sample_idx'] = len(self) + idx

        return data_info

    def full_init(self):
        """Load annotation file and set ``BaseDataset._fully_initialized`` to
        True.

        If ``lazy_init=False``, ``full_init`` will be called during the
        instantiation and ``self._fully_initialized`` will be set to True. If
        ``obj._fully_initialized=False``, the class method decorated by
        ``force_full_init`` will call ``full_init`` automatically.

        Several steps to initialize annotation:

            - load_data_list: Load annotations from annotation file.
            - filter data information: Filter annotations according to
              filter_cfg.
            - slice_data: Slice dataset according to ``self._indices``
            - serialize_data: Serialize ``self.data_list`` if
              ``self.serialize_data`` is True.
        """
        if self._fully_initialized:
            return
        # load data information
        self.data_list = self.load_data_list()
        # filter illegal data, such as data that has no annotations.
        self.data_list = self.filter_data()
        # Get subset data according to indices.
        if self._indices is not None:
            self.data_list = self._get_unserialized_subset(self._indices)

        # serialize data_list
        if self.serialize_data:
            self.data_bytes, self.data_address = self._serialize_data()
        
        self._fully_initialized = True

    @property
    def metainfo(self) -> dict:
        """Get meta information of dataset.

        Returns:
            dict: meta information collected from ``BaseDataset.METAINFO``,
            annotation file and metainfo argument during instantiation.
        """
        return copy.deepcopy(self._metainfo)

    def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:
        """Parse raw annotation to target format.

        This method should return dict or list of dict. Each dict or list
        contains the data information of a training sample. If the protocol of
        the sample annotations is changed, this function can be overridden to
        update the parsing logic while keeping compatibility.

        Args:
            raw_data_info (dict): Raw data information load from ``ann_file``

        Returns:
            list or list[dict]: Parsed annotation.
        """
        for prefix_key, prefix in self.data_prefix.items():
            assert prefix_key in raw_data_info, (
                f'raw_data_info: {raw_data_info} dose not contain prefix key'
                f'{prefix_key}, please check your data_prefix.')
            raw_data_info[prefix_key] = join_path(prefix,
                                                  raw_data_info[prefix_key])
        return raw_data_info

    def filter_data(self) -> List[dict]:
        """Filter annotations according to filter_cfg. Defaults return all
        ``data_list``.

        If some ``data_list`` could be filtered according to specific logic,
        the subclass should override this method.

        Returns:
            list[int]: Filtered results.
        """
        return self.data_list

    def get_cat_ids(self, idx: int) -> List[int]:
        """Get category ids by index. Dataset wrapped by ClassBalancedDataset
        must implement this method.

        The ``ClassBalancedDataset`` requires a subclass which implements this
        method.

        Args:
            idx (int): The index of data.

        Returns:
            list[int]: All categories in the image of specified index.
        """
        raise NotImplementedError(f'{type(self)} must implement `get_cat_ids` '
                                  'method')

    def __getitem__(self, idx: int) -> dict:
        """Get the idx-th image and data information of dataset after
        ``self.pipeline``, and ``full_init`` will be called if the dataset has
        not been fully initialized.

        During training phase, if ``self.pipeline`` get ``None``,
        ``self._rand_another`` will be called until a valid image is fetched or
         the maximum limit of refetech is reached.

        Args:
            idx (int): The index of self.data_list.

        Returns:
            dict: The idx-th image and data information of dataset after
            ``self.pipeline``.
        """
        # Performing full initialization by calling `__getitem__` will consume
        # extra memory. If a dataset is not fully initialized by setting
        # `lazy_init=True` and then fed into the dataloader. Different workers
        # will simultaneously read and parse the annotation. It will cost more
        # time and memory, although this may work. Therefore, it is recommended
        # to manually call `full_init` before dataset fed into dataloader to
        # ensure all workers use shared RAM from master process.
        if not self._fully_initialized:
            print_log(
                'Please call `full_init()` method manually to accelerate '
                'the speed.',
                logger='current',
                level=logging.WARNING)
            self.full_init()

        if self.test_mode:
            data = self.prepare_data(idx)
            if data is None:
                raise Exception('Test time pipline should not get `None` '
                                'data_sample')
            return data

        for _ in range(self.max_refetch + 1):
            data = self.prepare_data(idx)
            # Broken images or random augmentations may cause the returned data
            # to be None
            if data is None:
                idx = self._rand_another()
                continue
            return data

        raise Exception(f'Cannot find valid image after {self.max_refetch}! '
                        'Please check your image path and pipeline')

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``

        If the annotation file does not follow `OpenMMLab 2.0 format dataset
        <https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html>`_ .
        The subclass must override this method for load annotations. The meta
        information of annotation file will be overwritten :attr:`METAINFO`
        and ``metainfo`` argument of constructor.

        Returns:
            list[dict]: A list of annotation.
        """  # noqa: E501
        # `self.ann_file` denotes the absolute annotation file path if
        # `self.root=None` or relative path if `self.root=/path/to/data/`.
        annotations = load(self.ann_file)
        if not isinstance(annotations, dict):
            raise TypeError(f'The annotations loaded from annotation file '
                            f'should be a dict, but got {type(annotations)}!')
        if 'data_list' not in annotations or 'metainfo' not in annotations:
            raise ValueError('Annotation must have data_list and metainfo '
                             'keys')
        metainfo = annotations['metainfo']
        raw_data_list = annotations['data_list']

        # Meta information load from annotation file will not influence the
        # existed meta information load from `BaseDataset.METAINFO` and
        # `metainfo` arguments defined in constructor.
        for k, v in metainfo.items():
            self._metainfo.setdefault(k, v)

        # load and parse data_infos.
        data_list = []
        for raw_data_info in raw_data_list:
            # parse raw data information to target format
            data_info = self.parse_data_info(raw_data_info)
            if isinstance(data_info, dict):
                # For image tasks, `data_info` should information if single
                # image, such as dict(img_path='xxx', width=360, ...)
                data_list.append(data_info)
            elif isinstance(data_info, list):
                # For video tasks, `data_info` could contain image
                # information of multiple frames, such as
                # [dict(video_path='xxx', timestamps=...),
                #  dict(video_path='xxx', timestamps=...)]
                for item in data_info:
                    if not isinstance(item, dict):
                        raise TypeError('data_info must be list of dict, but '
                                        f'got {type(item)}')
                data_list.extend(data_info)
            else:
                raise TypeError('data_info should be a dict or list of dict, '
                                f'but got {type(data_info)}')

        return data_list

    @classmethod
    def _load_metainfo(cls, metainfo: dict = None) -> dict:
        """Collect meta information from the dictionary of meta.

        Args:
            metainfo (dict): Meta information dict. If ``metainfo``
                contains existed filename, it will be parsed by
                ``list_from_file``.

        Returns:
            dict: Parsed meta information.
        """
        # avoid `cls.METAINFO` being overwritten by `metainfo`
        cls_metainfo = copy.deepcopy(cls.METAINFO)
        if metainfo is None:
            return cls_metainfo
        if not isinstance(metainfo, dict):
            raise TypeError(
                f'metainfo should be a dict, but got {type(metainfo)}')

        for k, v in metainfo.items():
            if isinstance(v, str):
                # If type of value is string, and can be loaded from
                # corresponding backend. it means the file name of meta file.
                try:
                    cls_metainfo[k] = list_from_file(v)
                except (TypeError, FileNotFoundError):
                    print_log(
                        f'{v} is not a meta file, simply parsed as meta '
                        'information',
                        logger='current',
                        level=logging.WARNING)
                    cls_metainfo[k] = v
            else:
                cls_metainfo[k] = v
        return cls_metainfo

    def _join_prefix(self):
        """Join ``self.data_root`` with ``self.data_prefix`` and
        ``self.ann_file``.

        Examples:
            >>> # self.data_prefix contains relative paths
            >>> self.data_root = 'a/b/c'
            >>> self.data_prefix = dict(img='d/e/')
            >>> self.ann_file = 'f'
            >>> self._join_prefix()
            >>> self.data_prefix
            dict(img='a/b/c/d/e')
            >>> self.ann_file
            'a/b/c/f'
            >>> # self.data_prefix contains absolute paths
            >>> self.data_root = 'a/b/c'
            >>> self.data_prefix = dict(img='/d/e/')
            >>> self.ann_file = 'f'
            >>> self._join_prefix()
            >>> self.data_prefix
            dict(img='/d/e')
            >>> self.ann_file
            'a/b/c/f'
        """
        # Automatically join annotation file path with `self.root` if
        # `self.ann_file` is not an absolute path.
        if self.ann_file and not is_abs(self.ann_file) and self.data_root:
            self.ann_file = join_path(self.data_root, self.ann_file)
        # Automatically join data directory with `self.root` if path value in
        # `self.data_prefix` is not an absolute path.
        for data_key, prefix in self.data_prefix.items():
            if not isinstance(prefix, str):
                raise TypeError('prefix should be a string, but got '
                                f'{type(prefix)}')
            if not is_abs(prefix) and self.data_root:
                self.data_prefix[data_key] = join_path(self.data_root, prefix)
            else:
                self.data_prefix[data_key] = prefix

    @force_full_init
    def get_subset_(self, indices: Union[Sequence[int], int]) -> None:
        """The in-place version of ``get_subset`` to convert dataset to a
        subset of original dataset.

        This method will convert the original dataset to a subset of dataset.
        If type of indices is int, ``get_subset_`` will return a subdataset
        which contains the first or last few data information according to
        indices is positive or negative. If type of indices is a sequence of
        int, the subdataset will extract the data information according to
        the index given in indices.

        Examples:
              >>> dataset = BaseDataset('path/to/ann_file')
              >>> len(dataset)
              100
              >>> dataset.get_subset_(90)
              >>> len(dataset)
              90
              >>> # if type of indices is sequence, extract the corresponding
              >>> # index data information
              >>> dataset.get_subset_([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
              >>> len(dataset)
              10
              >>> dataset.get_subset_(-3)
              >>> len(dataset) # Get the latest few data information.
              3

        Args:
            indices (int or Sequence[int]): If type of indices is int, indices
                represents the first or last few data of dataset according to
                indices is positive or negative. If type of indices is
                Sequence, indices represents the target data information
                index of dataset.
        """
        # Get subset of data from serialized data or data information sequence
        # according to `self.serialize_data`.
        if self.serialize_data:
            self.data_bytes, self.data_address = \
                self._get_serialized_subset(indices)
        else:
            self.data_list = self._get_unserialized_subset(indices)

    @force_full_init
    def get_subset(self, indices: Union[Sequence[int], int]) -> 'BaseDataset':
        """Return a subset of dataset.

        This method will return a subset of original dataset. If type of
        indices is int, ``get_subset_`` will return a subdataset which
        contains the first or last few data information according to
        indices is positive or negative. If type of indices is a sequence of
        int, the subdataset will extract the information according to the index
        given in indices.

        Examples:
              >>> dataset = BaseDataset('path/to/ann_file')
              >>> len(dataset)
              100
              >>> subdataset = dataset.get_subset(90)
              >>> len(sub_dataset)
              90
              >>> # if type of indices is list, extract the corresponding
              >>> # index data information
              >>> subdataset = dataset.get_subset([0, 1, 2, 3, 4, 5, 6, 7,
              >>>                                  8, 9])
              >>> len(sub_dataset)
              10
              >>> subdataset = dataset.get_subset(-3)
              >>> len(subdataset) # Get the latest few data information.
              3

        Args:
            indices (int or Sequence[int]): If type of indices is int, indices
                represents the first or last few data of dataset according to
                indices is positive or negative. If type of indices is
                Sequence, indices represents the target data information
                index of dataset.

        Returns:
            BaseDataset: A subset of dataset.
        """
        # Get subset of data from serialized data or data information list
        # according to `self.serialize_data`. Since `_get_serialized_subset`
        # will recalculate the subset data information,
        # `_copy_without_annotation` will copy all attributes except data
        # information.
        sub_dataset = self._copy_without_annotation()
        # Get subset of dataset with serialize and unserialized data.
        if self.serialize_data:
            data_bytes, data_address = \
                self._get_serialized_subset(indices)
            sub_dataset.data_bytes = data_bytes.copy()
            sub_dataset.data_address = data_address.copy()
        else:
            data_list = self._get_unserialized_subset(indices)
            sub_dataset.data_list = copy.deepcopy(data_list)
        return sub_dataset

    def _get_serialized_subset(self, indices: Union[Sequence[int], int]) \
            -> Tuple[np.ndarray, np.ndarray]:
        """Get subset of serialized data information list.

        Args:
            indices (int or Sequence[int]): If type of indices is int,
                indices represents the first or last few data of serialized
                data information list. If type of indices is Sequence, indices
                represents the target data information index which consist of
                subset data information.

        Returns:
            Tuple[np.ndarray, np.ndarray]: subset of serialized data
            information.
        """
        sub_data_bytes: Union[List, np.ndarray]
        sub_data_address: Union[List, np.ndarray]
        if isinstance(indices, int):
            if indices >= 0:
                assert indices < len(self.data_address), \
                    f'{indices} is out of dataset length({len(self)}'
                # Return the first few data information.
                end_addr = self.data_address[indices - 1].item() \
                    if indices > 0 else 0
                # Slicing operation of `np.ndarray` does not trigger a memory
                # copy.
                sub_data_bytes = self.data_bytes[:end_addr]
                # Since the buffer size of first few data information is not
                # changed,
                sub_data_address = self.data_address[:indices]
            else:
                assert -indices <= len(self.data_address), \
                    f'{indices} is out of dataset length({len(self)}'
                # Return the last few data information.
                ignored_bytes_size = self.data_address[indices - 1]
                start_addr = self.data_address[indices - 1].item()
                sub_data_bytes = self.data_bytes[start_addr:]
                sub_data_address = self.data_address[indices:]
                sub_data_address = sub_data_address - ignored_bytes_size
        elif isinstance(indices, Sequence):
            sub_data_bytes = []
            sub_data_address = []
            for idx in indices:
                assert len(self) > idx >= -len(self)
                start_addr = 0 if idx == 0 else \
                    self.data_address[idx - 1].item()
                end_addr = self.data_address[idx].item()
                # Get data information by address.
                sub_data_bytes.append(self.data_bytes[start_addr:end_addr])
                # Get data information size.
                sub_data_address.append(end_addr - start_addr)
            # Handle indices is an empty list.
            if sub_data_bytes:
                sub_data_bytes = np.concatenate(sub_data_bytes)
                sub_data_address = np.cumsum(sub_data_address)
            else:
                sub_data_bytes = np.array([])
                sub_data_address = np.array([])
        else:
            raise TypeError('indices should be a int or sequence of int, '
                            f'but got {type(indices)}')
        return sub_data_bytes, sub_data_address  # type: ignore

    def _get_unserialized_subset(self, indices: Union[Sequence[int],
                                                      int]) -> list:
        """Get subset of data information list.

        Args:
            indices (int or Sequence[int]): If type of indices is int,
                indices represents the first or last few data of data
                information. If type of indices is Sequence, indices represents
                the target data information index which consist of subset data
                information.

        Returns:
            Tuple[np.ndarray, np.ndarray]: subset of data information.
        """
        if isinstance(indices, int):
            if indices >= 0:
                # Return the first few data information.
                sub_data_list = self.data_list[:indices]
            else:
                # Return the last few data information.
                sub_data_list = self.data_list[indices:]
        elif isinstance(indices, Sequence):
            # Return the data information according to given indices.
            sub_data_list = []
            for idx in indices:
                sub_data_list.append(self.data_list[idx])
        else:
            raise TypeError('indices should be a int or sequence of int, '
                            f'but got {type(indices)}')
        return sub_data_list

    def _serialize_data(self) -> Tuple[np.ndarray, np.ndarray]:
        """Serialize ``self.data_list`` to save memory when launching multiple
        workers in data loading. This function will be called in ``full_init``.

        Hold memory using serialized objects, and data loader workers can use
        shared RAM from master process instead of making a copy.

        Returns:
            Tuple[np.ndarray, np.ndarray]: Serialized result and corresponding
            address.
        """

        def _serialize(data):
            buffer = pickle.dumps(data, protocol=4)
            return np.frombuffer(buffer, dtype=np.uint8)

        # Serialize data information list avoid making multiple copies of
        # `self.data_list` when iterate `import torch.utils.data.dataloader`
        # with multiple workers.
        data_list = [_serialize(x) for x in self.data_list]
        address_list = np.asarray([len(x) for x in data_list], dtype=np.int64)
        data_address: np.ndarray = np.cumsum(address_list)
        # TODO Check if np.concatenate is necessary
        data_bytes = np.concatenate(data_list)
        # Empty cache for preventing making multiple copies of
        # `self.data_info` when loading data multi-processes.
        self.data_list.clear()
        gc.collect()
        return data_bytes, data_address

    def _rand_another(self) -> int:
        """Get random index.

        Returns:
            int: Random index from 0 to ``len(self)-1``
        """
        return np.random.randint(0, len(self))

    def prepare_data(self, idx) -> Any:
        """Get data processed by ``self.pipeline``.

        Args:
            idx (int): The index of ``data_info``.

        Returns:
            Any: Depends on ``self.pipeline``.
        """
        data_info = self.get_data_info(idx)
        return self.pipeline(data_info)

    @force_full_init
    def __len__(self) -> int:
        """Get the length of filtered dataset and automatically call
        ``full_init`` if the  dataset has not been fully init.

        Returns:
            int: The length of filtered dataset.
        """
        if self.serialize_data:
            return len(self.data_address)
        else:
            return len(self.data_list)

    def _copy_without_annotation(self, memo=dict()) -> 'BaseDataset':
        """Deepcopy for all attributes other than ``data_list``,
        ``data_address`` and ``data_bytes``.

        Args:
            memo: Memory dict which used to reconstruct complex object
                correctly.
        """
        cls = self.__class__
        other = cls.__new__(cls)
        memo[id(self)] = other

        for key, value in self.__dict__.items():
            if key in ['data_list', 'data_address', 'data_bytes']:
                continue
            super(BaseDataset, other).__setattr__(key,
                                                  copy.deepcopy(value, memo))

        return other