Spaces:
Build error
Build error
File size: 11,433 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from typing import Callable, Dict, List, Optional, Union
import torch.nn as nn
import mmengine
from mmengine.device import get_device
from mmengine.model import revert_sync_batchnorm
from mmengine.optim import BaseOptimWrapper, _ParamScheduler
from mmengine.registry import STRATEGIES
from mmengine.utils import get_git_hash
from .base import BaseStrategy
@STRATEGIES.register_module()
class SingleDeviceStrategy(BaseStrategy):
"""Strategy for single device training."""
def prepare(
self,
model: Union[nn.Module, dict],
*,
optim_wrapper: Union[BaseOptimWrapper, dict, None] = None,
param_scheduler: Union[_ParamScheduler, Dict, List, None] = None,
compile: Union[dict, bool] = False,
dispatch_kwargs: Optional[dict] = None,
):
"""Prepare model and some components.
Args:
model (:obj:`torch.nn.Module` or dict): The model to be run. It
can be a dict used for build a model.
Keyword Args:
optim_wrapper (BaseOptimWrapper or dict, optional): Computing the
gradient of model parameters and updating them.
Defaults to None.
See :meth:`build_optim_wrapper` for examples.
param_scheduler (_ParamScheduler or dict or list, optional):
Parameter scheduler for updating optimizer parameters. If
specified, :attr:`optim_wrapper` should also be specified.
Defaults to None.
See :meth:`build_param_scheduler` for examples.
compile (dict, optional): Config to compile model.
Defaults to False. Requires PyTorch>=2.0.
dispatch_kwargs (dict, optional): Kwargs to be passed to other
methods of Strategy. Defaults to None.
If ``accumulative_counts`` is set in ``optim_wrapper``, you
need to provide ``max_iters`` in ``dispatch_kwargs``.
"""
if self._prepared:
return self._prepared_components()
if dispatch_kwargs is not None:
self.dispatch_kwargs.update(dispatch_kwargs)
model = self.build_model(model)
model = self._init_model_weights(model)
model = self._wrap_model(model)
model = self.compile_model(model, compile=compile)
self.model = model
if optim_wrapper is not None:
self.optim_wrapper = self.build_optim_wrapper(optim_wrapper, model)
if param_scheduler is not None:
self.param_schedulers = self.build_param_scheduler(
param_scheduler, self.optim_wrapper)
if optim_wrapper is not None:
self._scale_lr()
accumulative_counts = getattr(self.optim_wrapper,
'_accumulative_counts', 1)
if accumulative_counts > 1:
if 'max_iters' not in self.dispatch_kwargs:
raise ValueError(
'"max_iters" must be specified because '
'"accumulative_counts" was set as '
f'{accumulative_counts} which is greater than 1.')
self.optim_wrapper.initialize_count_status( # type: ignore
self.model, 0, self.dispatch_kwargs['max_iters'])
self._prepared = True
return self._prepared_components()
def _wrap_model(self, model: nn.Module) -> nn.Module:
model = self.convert_model(model)
current_device = get_device()
return model.to(current_device)
def convert_model(self, model: nn.Module) -> nn.Module:
"""Convert layers of model.
convert all ``SyncBatchNorm`` (SyncBN) and
``mmcv.ops.sync_bn.SyncBatchNorm`` (MMSyncBN) layers in the model to
``BatchNormXd`` layers.
Args:
model (nn.Module): Model to convert.
"""
self.logger.info(
'Distributed training is not used, all SyncBatchNorm (SyncBN) '
'layers in the model will be automatically reverted to '
'BatchNormXd layers if they are used.')
model = revert_sync_batchnorm(model)
return model
def load_checkpoint(
self,
filename: str,
*,
map_location: Union[str, Callable] = 'cpu',
strict: bool = False,
revise_keys: list = [(r'^module.', '')],
callback: Optional[Callable] = None,
) -> dict:
"""Load checkpoint from given ``filename``.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
Keyword Args:
map_location (str or callable): A string or a callable function to
specifying how to remap storage locations.
Defaults to 'cpu'.
strict (bool): strict (bool): Whether to allow different params for
the model and checkpoint.
revise_keys (list): A list of customized keywords to modify the
state_dict in checkpoint. Each item is a (pattern, replacement)
pair of the regular expression operations. Defaults to strip
the prefix 'module.' by [(r'^module\\.', '')].
callback (callable, callable): Callback function to modify the
checkpoint after loading the checkpoint.
Defaults to None.
"""
from mmengine.runner.checkpoint import _load_checkpoint
self.logger.info(f'Load checkpoint from {filename}')
if map_location == 'default':
device = get_device()
checkpoint = _load_checkpoint(filename, map_location=device)
else:
checkpoint = _load_checkpoint(filename, map_location=map_location)
# users can do some modification after loading checkpoint
if callback is not None:
callback(checkpoint)
state_dict = checkpoint.pop('state_dict')
self.load_model_state_dict(
state_dict, strict=strict, revise_keys=revise_keys)
return checkpoint
def resume(
self,
filename: str,
*,
resume_optimizer: bool = True,
resume_param_scheduler: bool = True,
map_location: Union[str, Callable] = 'default',
callback: Optional[Callable] = None,
) -> dict:
"""Resume training from given ``filename``.
Four types of states will be resumed.
- model state
- optimizer state
- scheduler state
- randomness state
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
Keyword Args:
resume_optimizer (bool): Whether to resume optimizer state.
Defaults to True.
resume_param_scheduler (bool): Whether to resume param scheduler
state. Defaults to True.
map_location (str or callable):A string or a callable function to
specifying how to remap storage locations.
Defaults to 'default'.
callback (callable, callable): Callback function to modify the
checkpoint before saving the checkpoint.
Defaults to None.
"""
self.logger.info(f'Resume checkpoint from {filename}')
checkpoint = self.load_checkpoint(
filename, map_location=map_location, callback=callback)
if resume_optimizer:
self.load_optim_state_dict(checkpoint.pop('optimizer'))
if resume_param_scheduler and hasattr(self, 'param_schedulers'):
self.load_scheduler_state_dict(checkpoint.pop('param_schedulers'))
# resume random seed
resumed_seed = checkpoint['meta'].get('seed', None)
current_seed = self._randomness.get('seed')
if resumed_seed is not None and resumed_seed != current_seed:
if current_seed is not None:
self.logger.warning(f'The value of random seed in the '
f'checkpoint "{resumed_seed}" is '
f'different from the value in '
f'`randomness` config "{current_seed}"')
self._randomness.update(seed=resumed_seed)
self._set_randomness(**self._randomness)
# resume iter
cur_iter = checkpoint['meta']['iter']
if hasattr(self, 'optim_wrapper'):
accumulative_counts = getattr(self.optim_wrapper,
'_accumulative_counts', 1)
if accumulative_counts > 1:
if 'max_iters' not in self.dispatch_kwargs:
raise ValueError(
'"max_iters" must be specified because '
'"accumulative_counts" was set as '
f'{accumulative_counts} which is greater than 1.')
# Initiate inner count of `optim_wrapper`.
self.optim_wrapper.initialize_count_status( # type: ignore
self.model, cur_iter, self.dispatch_kwargs['max_iters'])
return checkpoint
def save_checkpoint(
self,
filename: str,
*,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
extra_ckpt: Optional[dict] = None,
callback: Optional[Callable] = None,
) -> None:
"""Save checkpoint to given ``filename``.
Args:
filename (str): Filename to save checkpoint.
Keyword Args:
save_optimizer (bool): Whether to save the optimizer to
the checkpoint. Defaults to True.
save_param_scheduler (bool): Whether to save the param_scheduler
to the checkpoint. Defaults to True.
extra_ckpt (dict, optional): Extra checkpoint to save.
Defaults to None.
callback (callable, callable): Callback function to modify the
checkpoint before saving the checkpoint.
Defaults to None.
"""
from mmengine.runner.checkpoint import save_checkpoint
state_dict: dict = dict()
state_dict['state_dict'] = self.model_state_dict()
# save optimizer state dict
if save_optimizer and hasattr(self, 'optim_wrapper'):
state_dict['optimizer'] = self.optim_state_dict()
if save_param_scheduler and hasattr(self, 'param_schedulers'):
state_dict['param_schedulers'] = self.scheduler_state_dict()
# save extra checkpoint passed by users
if extra_ckpt is None:
extra_ckpt = dict()
if 'meta' not in extra_ckpt:
extra_ckpt['meta'] = dict()
extra_ckpt['meta'].update(
seed=self.seed,
time=time.strftime('%Y%m%d_%H%M%S', time.localtime()),
mmengine=mmengine.__version__ + get_git_hash(),
)
state_dict.update(extra_ckpt)
# users can do some modification before saving checkpoint
if callback is not None:
callback(state_dict)
save_checkpoint(state_dict, filename)
|