Spaces:
Build error
Build error
File size: 19,164 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import os.path as osp
import time
from typing import Any, Callable, Dict, List, Optional, Union
import torch
try:
import deepspeed
except ImportError:
deepspeed = None
import torch.nn as nn
import mmengine
from mmengine.dist import init_dist
from mmengine.optim import BaseOptimWrapper, _ParamScheduler
from mmengine.registry import (MODEL_WRAPPERS, OPTIM_WRAPPERS, OPTIMIZERS,
STRATEGIES)
from mmengine.utils import get_git_hash
from .base import BaseStrategy
def register_deepspeed_optimizers() -> List[str]:
"""Register optimizers in ``deepspeed`` to the ``OPTIMIZERS`` registry.
Returns:
List[str]: A list of registered optimizers' name.
"""
deepspeed_optimizers = []
try:
import deepspeed # noqa: F401
except ImportError:
pass
else:
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
from deepspeed.ops.lamb import FusedLamb
from deepspeed.runtime.fp16.onebit import (OnebitAdam, OnebitLamb,
ZeroOneAdam)
OPTIMIZERS.register_module(module=DeepSpeedCPUAdam)
deepspeed_optimizers.append('DeepSpeedCPUAdam')
OPTIMIZERS.register_module(module=FusedAdam)
deepspeed_optimizers.append('FusedAdam')
OPTIMIZERS.register_module(module=FusedLamb)
deepspeed_optimizers.append('FusedLamb')
OPTIMIZERS.register_module(module=OnebitAdam)
deepspeed_optimizers.append('OnebitAdam')
OPTIMIZERS.register_module(module=OnebitLamb)
deepspeed_optimizers.append('OnebitLamb')
OPTIMIZERS.register_module(module=ZeroOneAdam)
deepspeed_optimizers.append('ZeroOneAdam')
return deepspeed_optimizers
@OPTIM_WRAPPERS.register_module()
class DeepSpeedOptimWrapper(BaseOptimWrapper):
def __init__(self, optimizer):
super().__init__(optimizer)
self._model = None
@property
def model(self):
if self._model is None:
raise ValueError('model attribute should be set before accessing.')
return self._model
@model.setter
def model(self, value):
self._model = value
def update_params(self, loss) -> None: # type: ignore
"""Update parameters in :attr:`optimizer`."""
self.backward(loss)
self.step()
def backward(self, loss: torch.Tensor, **kwargs) -> None:
""""Perform gradient back propagation."""
self.model.backward(loss)
def zero_grad(self, **kwargs) -> None:
raise NotImplementedError(
'DeepSpeedOptimWrapper does not support zero_grad method '
'currently.')
def step(self, **kwargs):
self.model.step()
def state_dict(self) -> dict:
state_dict = {}
if self.base_param_settings is not None:
state_dict['base_param_settings'] = self.base_param_settings
return state_dict
def load_state_dict(self, state_dict: dict) -> None:
base_param_settings = state_dict.pop('base_param_settings', None)
if base_param_settings is not None:
self.base_param_settings = base_param_settings
@MODEL_WRAPPERS.register_module()
class MMDeepSpeedEngineWrapper:
def __init__(
self,
*,
model: 'deepspeed.DeepSpeedEngine',
inputs_to_half: Optional[List[Union[int, str]]] = None,
):
self.model = model
self._inputs_to_half = inputs_to_half
def __getattr__(self, name):
return getattr(self.model, name)
def train_step(
self,
data: Union[dict, tuple, list],
optim_wrapper: DeepSpeedOptimWrapper,
) -> Dict[str, torch.Tensor]:
data = self.model.module.data_preprocessor(data, training=True)
data = self._cast_inputs_half(data)
losses = self._run_forward(data, mode='loss')
parsed_loss, log_vars = self.model.module.parse_losses(losses)
optim_wrapper.update_params(parsed_loss)
return log_vars
def val_step(self, data: Union[dict, tuple, list]) -> list:
"""Gets the prediction of module during validation process.
Args:
data (dict or tuple or list): Data sampled from dataset.
Returns:
list: The predictions of given data.
"""
data = self.model.module.data_preprocessor(data, False)
data = self._cast_inputs_half(data)
return self._run_forward(data, mode='predict')
def test_step(self, data: Union[dict, tuple, list]) -> list:
"""Gets the predictions of module during testing process.
Args:
data (dict or tuple or list): Data sampled from dataset.
Returns:
list: The predictions of given data.
"""
data = self.model.module.data_preprocessor(data, False)
data = self._cast_inputs_half(data)
return self._run_forward(data, mode='predict')
def _run_forward(self, data: Union[dict, tuple, list], mode: str) -> Any:
"""Unpacks data for :meth:`forward`
Args:
data (dict or tuple or list): Data sampled from dataset.
mode (str): Mode of forward.
Returns:
dict or list: Results of training or testing mode.
"""
if isinstance(data, dict):
results = self.model(**data, mode=mode)
elif isinstance(data, (list, tuple)):
results = self.model(*data, mode=mode)
else:
raise TypeError('Output of `data_preprocessor` should be '
f'list, tuple or dict, but got {type(data)}')
return results
def _cast_inputs_half(self, inputs: Union[list, tuple, dict, None]):
"""Cast inputs to half precision if needed.
Args:
inputs (list or tuple or dict or None): Inputs to be casted.
Returns:
list or tuple or dict or None: Casted inputs.
"""
if self._inputs_to_half is None:
return inputs
if isinstance(inputs, (list, tuple)):
new_inputs = []
for i, v in enumerate(inputs):
if i in self._inputs_to_half:
new_inputs.append(v.half())
else:
new_inputs.append(v)
return inputs.__class__(new_inputs)
elif isinstance(inputs, dict):
for k, v in inputs.items():
if k in self._inputs_to_half:
inputs[k] = v.half()
return inputs
else:
raise TypeError('inputs should be list, tuple or dict, '
f'but got {type(inputs)}')
@STRATEGIES.register_module()
class DeepSpeedStrategy(BaseStrategy):
"""Support training models with DeepSpeed.
Note:
The detailed usage of parameters can be found at
https://www.deepspeed.ai/docs/config-json/.
Args:
config (str or dict, optional): If it is a string, it is a path to load
config for deepspeed. Defaults to None.
zero_optimization (dict, optional): Enabling and configuring ZeRO
memory optimizations. Defaults to None.
gradient_clipping (float, optional): Enable gradient clipping with
value. Defaults to None.
fp16 (dict, optional): Configuration for using mixed precision/FP16
training that leverages NVIDIA's Apex package. Defaults to None.
inputs_to_half (list[int or str], optional): Which inputs are to
converted to half precision. Defaults to None.
If ``fp16`` is enabled, it also should be set.
bf16 (dict, optional): Configuration for using bfloat16 floating-point
format as an alternative to FP16. Defaults to None.
amp (dict, optional): Configuration for using automatic mixed
precision (AMP) training that leverages NVIDIA's Apex AMP package.
Defaults to None.
activation_checkpointing (dict, optional): Reduce memory usage by
clearing activations of certain layers and recomputing them
during a backward pass.
Defaults to None.
aio (dict, optional): Configuring the asynchronous I/O module for
offloading parameter and optimizer states to persistent (NVMe)
storage. This module uses Linux native asynchronous I/O (libaio).
Defaults to None.
train_micro_batch_size_per_gpu (int, optional): Batch size to be
processed by one GPU in one step (without gradient accumulation).
Defaults to None.
gradient_accumulation_steps (int, optional): Number of training steps
to accumulate gradients before averaging and applying them.
Defaults to None.
"""
def __init__(
self,
*,
# the following args are for deepspeed
config: Union[str, dict, None] = None,
zero_optimization: Optional[dict] = None,
gradient_clipping: Optional[float] = None,
fp16: Optional[dict] = None,
inputs_to_half: Optional[List[Union[int, str]]] = None,
bf16: Optional[dict] = None,
amp: Optional[dict] = None,
activation_checkpointing: Optional[dict] = None,
aio: Optional[dict] = None,
train_micro_batch_size_per_gpu: Optional[int] = None,
gradient_accumulation_steps: Optional[int] = None,
# disable the log printed by deepseed
steps_per_print: int = 10000000000000,
# the following args are for BaseStrategy
**kwargs,
):
assert deepspeed is not None, \
'DeepSpeed is not installed. Please check ' \
'https://github.com/microsoft/DeepSpeed#installation.'
super().__init__(**kwargs)
self.config = self._parse_config(config)
if zero_optimization is not None:
self.config['zero_optimization'] = zero_optimization
if gradient_clipping is not None:
self.config['gradient_clipping'] = gradient_clipping
if fp16 is not None:
self.config['fp16'] = fp16
if bf16 is not None:
self.config['bf16'] = bf16
if amp is not None:
self.config['amp'] = amp
if activation_checkpointing is not None:
self.config['activation_checkpointing'] = activation_checkpointing
if aio is not None:
self.config['aio'] = aio
if train_micro_batch_size_per_gpu is not None:
self.config['train_micro_batch_size_per_gpu'] = \
train_micro_batch_size_per_gpu
if gradient_accumulation_steps is not None:
self.config['gradient_accumulation_steps'] = \
gradient_accumulation_steps
else:
self.config.setdefault('gradient_accumulation_steps', 1)
self.config['steps_per_print'] = steps_per_print
self._inputs_to_half = inputs_to_half
register_deepspeed_optimizers()
def _parse_config(self, config):
if config is None:
config = dict()
elif isinstance(config, str):
with open(config) as f:
config = json.load(f)
return config
def _setup_distributed( # type: ignore
self,
launcher: Optional[str] = None,
backend: str = 'nccl',
**kwargs,
):
"""Setup distributed environment.
Args:
launcher (str, optional): Way to launch multi processes.
DeepSpeedStrategy does not support the launcher argument.
backend (str): Communication Backends. Supported backends are
'nccl', 'gloo' and 'mpi'. Defaults to 'nccl'.
**kwargs: Other arguments for :func:`deepspeed.init_distributed`.
"""
init_dist(launcher, backend, init_backend='deepspeed', **kwargs)
def prepare(
self,
model: Union[nn.Module, dict],
*,
optim_wrapper: Union[BaseOptimWrapper, dict, None] = None,
param_scheduler: Union[_ParamScheduler, Dict, List, None] = None,
compile: Union[dict, bool] = False,
dispatch_kwargs: Optional[dict] = None,
):
"""Prepare model and some components.
Args:
model (:obj:`torch.nn.Module` or dict): The model to be run. It
can be a dict used for build a model.
Keyword Args:
optim_wrapper (BaseOptimWrapper or dict, optional): Computing the
gradient of model parameters and updating them.
Defaults to None.
See :meth:`build_optim_wrapper` for examples.
param_scheduler (_ParamScheduler or dict or list, optional):
Parameter scheduler for updating optimizer parameters. If
specified, :attr:`optim_wrapper` should also be specified.
Defaults to None.
See :meth:`build_param_scheduler` for examples.
compile (dict, optional): Config to compile model.
Defaults to False. Requires PyTorch>=2.0.
dispatch_kwargs (dict, optional): Kwargs to be passed to other
methods of Strategy. Defaults to None.
"""
if self._prepared:
return self._prepared_components()
assert dispatch_kwargs is not None
self.dispatch_kwargs.update(dispatch_kwargs)
model = self.build_model(model)
model = self._init_model_weights(model)
if optim_wrapper is not None:
self.optim_wrapper = self.build_optim_wrapper(optim_wrapper, model)
self.model = self._wrap_model(model)
self.optim_wrapper.model = self.model # type: ignore
else:
self.model = self._wrap_model(model)
if param_scheduler is not None:
self.param_schedulers = self.build_param_scheduler(
param_scheduler, self.optim_wrapper)
self._prepared = True
return self._prepared_components()
def _wrap_model(self, model: nn.Module) -> nn.Module:
if hasattr(self, 'optim_wrapper'):
engine, self.optim_wrapper.optimizer, *_ = deepspeed.initialize(
model=model,
optimizer=self.optim_wrapper.optimizer,
config=self.config)
else:
engine, *_ = deepspeed.initialize(model=model, config=self.config)
wrapper = MMDeepSpeedEngineWrapper(
model=engine, inputs_to_half=self._inputs_to_half)
return wrapper
def load_checkpoint(
self,
filename: str,
*,
map_location: Union[str, Callable] = 'cpu',
strict: bool = False,
revise_keys: list = [(r'^module.', '')],
callback: Optional[Callable] = None,
) -> dict:
"""Load checkpoint from given ``filename``.
Warning:
`map_localtion` and `callback` parameters are not supported yet.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
"""
self.logger.info(f'Load checkpoint from {filename}')
dirname, basename = osp.split(filename)
_, extra_ckpt = self.model.load_checkpoint(
dirname, tag=basename, load_optimizer_states=False)
return extra_ckpt
def resume(
self,
filename: str,
*,
resume_optimizer: bool = True,
resume_param_scheduler: bool = True,
map_location: Union[str, Callable] = 'default',
callback: Optional[Callable] = None,
) -> dict:
"""Resume training from given ``filename``.
Warning:
`map_location` and `callback` parameters are not supported yet.
Args:
filename (str): Accept local filepath.
Keyword Args:
resume_optimizer (bool): Whether to resume optimizer state.
Defaults to True.
resume_param_scheduler (bool): Whether to resume param scheduler
state. Defaults to True.
"""
self.logger.info(f'Resume checkpoint from {filename}')
dirname, basename = osp.split(filename)
_, extra_ckpt = self.model.load_checkpoint(
dirname, tag=basename, load_optimizer_states=resume_optimizer)
if resume_optimizer:
self.load_optim_state_dict(extra_ckpt.pop('optim_wrapper'))
if resume_param_scheduler and hasattr(self, 'param_schedulers'):
param_schedulers = extra_ckpt.pop('param_schedulers')
self.load_scheduler_state_dict(param_schedulers)
# resume random seed
resumed_seed = extra_ckpt['meta'].get('seed', None)
current_seed = self._randomness.get('seed')
if resumed_seed is not None and resumed_seed != current_seed:
if current_seed is not None:
self.logger.warning(f'The value of random seed in the '
f'checkpoint "{resumed_seed}" is '
f'different from the value in '
f'`randomness` config "{current_seed}"')
self._randomness.update(seed=resumed_seed)
self._set_randomness(**self._randomness)
return extra_ckpt
def save_checkpoint(
self,
filename: str,
*,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
extra_ckpt: Optional[dict] = None,
callback: Optional[Callable] = None,
) -> None:
"""Save checkpoint to given ``filename``.
Warning:
`save_optimizer` and `callback` parameters are not supported yet.
Args:
filename (str): Filename to save checkpoint.
Keyword Args:
save_param_scheduler (bool): Whether to save the param_scheduler
to the checkpoint. Defaults to True.
extra_ckpt (dict, optional): Extra checkpoint to save.
Defaults to None.
"""
if extra_ckpt is None:
extra_ckpt = dict()
if 'meta' not in extra_ckpt:
extra_ckpt['meta'] = dict()
extra_ckpt['meta'].update(
seed=self.seed,
time=time.strftime('%Y%m%d_%H%M%S', time.localtime()),
mmengine=mmengine.__version__ + get_git_hash(),
)
if save_optimizer and hasattr(self, 'optim_wrapper'):
# The key can not be 'optimizer', otherwise error will be thrown
# when loading or resuming checkpoint.
extra_ckpt['optim_wrapper'] = self.optim_state_dict()
if save_param_scheduler and hasattr(self, 'param_schedulers'):
extra_ckpt['param_schedulers'] = self.scheduler_state_dict()
dirname, basename = osp.split(filename)
self.model.save_checkpoint(
dirname, tag=basename, client_state=extra_ckpt, save_latest=False)
|