File size: 3,953 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from argparse import ArgumentParser, Namespace
from pathlib import Path
from tempfile import TemporaryDirectory

from mmengine.config import Config
from mmengine.utils import mkdir_or_exist

try:
    from model_archiver.model_packaging import package_model
    from model_archiver.model_packaging_utils import ModelExportUtils
except ImportError:
    package_model = None


def mmdet2torchserve(
    config_file: str,
    checkpoint_file: str,
    output_folder: str,
    model_name: str,
    model_version: str = '1.0',
    force: bool = False,
):
    """Converts MMDetection model (config + checkpoint) to TorchServe `.mar`.

    Args:
        config_file:
            In MMDetection config format.
            The contents vary for each task repository.
        checkpoint_file:
            In MMDetection checkpoint format.
            The contents vary for each task repository.
        output_folder:
            Folder where `{model_name}.mar` will be created.
            The file created will be in TorchServe archive format.
        model_name:
            If not None, used for naming the `{model_name}.mar` file
            that will be created under `output_folder`.
            If None, `{Path(checkpoint_file).stem}` will be used.
        model_version:
            Model's version.
        force:
            If True, if there is an existing `{model_name}.mar`
            file under `output_folder` it will be overwritten.
    """
    mkdir_or_exist(output_folder)

    config = Config.fromfile(config_file)

    with TemporaryDirectory() as tmpdir:
        config.dump(f'{tmpdir}/config.py')

        args = Namespace(
            **{
                'model_file': f'{tmpdir}/config.py',
                'config_file': f'{tmpdir}/config.py',
                'serialized_file': checkpoint_file,
                'handler': f'{Path(__file__).parent}/mmdet_handler.py',
                'model_name': model_name or Path(checkpoint_file).stem,
                'version': model_version,
                'export_path': output_folder,
                'force': force,
                'requirements_file': None,
                'extra_files': None,
                'runtime': 'python',
                'archive_format': 'default'
            })
        manifest = ModelExportUtils.generate_manifest_json(args)
        package_model(args, manifest)


def parse_args():
    parser = ArgumentParser(
        description='Convert MMDetection models to TorchServe `.mar` format.')
    parser.add_argument('config', type=str, help='config file path')
    parser.add_argument('checkpoint', type=str, help='checkpoint file path')
    parser.add_argument(
        '--output-folder',
        type=str,
        required=True,
        help='Folder where `{model_name}.mar` will be created.')
    parser.add_argument(
        '--model-name',
        type=str,
        default=None,
        help='If not None, used for naming the `{model_name}.mar`'
        'file that will be created under `output_folder`.'
        'If None, `{Path(checkpoint_file).stem}` will be used.')
    parser.add_argument(
        '--model-version',
        type=str,
        default='1.0',
        help='Number used for versioning.')
    parser.add_argument(
        '-f',
        '--force',
        action='store_true',
        help='overwrite the existing `{model_name}.mar`')
    args = parser.parse_args()

    return args


if __name__ == '__main__':
    args = parse_args()

    if package_model is None:
        raise ImportError('`torch-model-archiver` is required.'
                          'Try: pip install torch-model-archiver')

    mmdet2torchserve(args.config, args.checkpoint, args.output_folder,
                     args.model_name, args.model_version, args.force)