File size: 9,271 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import copy
import os
import os.path as osp

from mmengine.config import Config, DictAction
from mmengine.dist import get_dist_info
from mmengine.evaluator import DumpResults
from mmengine.fileio import dump
from mmengine.runner import Runner

from mmdet.engine.hooks.utils import trigger_visualization_hook
from mmdet.registry import RUNNERS
from tools.analysis_tools.robustness_eval import get_results


def parse_args():
    parser = argparse.ArgumentParser(description='MMDet test detector')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument(
        '--out',
        type=str,
        help='dump predictions to a pickle file for offline evaluation')
    parser.add_argument(
        '--corruptions',
        type=str,
        nargs='+',
        default='benchmark',
        choices=[
            'all', 'benchmark', 'noise', 'blur', 'weather', 'digital',
            'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise',
            'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow',
            'frost', 'fog', 'brightness', 'contrast', 'elastic_transform',
            'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur',
            'spatter', 'saturate'
        ],
        help='corruptions')
    parser.add_argument(
        '--work-dir',
        help='the directory to save the file containing evaluation metrics')
    parser.add_argument(
        '--severities',
        type=int,
        nargs='+',
        default=[0, 1, 2, 3, 4, 5],
        help='corruption severity levels')
    parser.add_argument(
        '--summaries',
        type=bool,
        default=False,
        help='Print summaries for every corruption and severity')
    parser.add_argument('--show', action='store_true', help='show results')
    parser.add_argument(
        '--show-dir', help='directory where painted images will be saved')
    parser.add_argument(
        '--wait-time', type=float, default=2, help='the interval of show (s)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--final-prints',
        type=str,
        nargs='+',
        choices=['P', 'mPC', 'rPC'],
        default='mPC',
        help='corruption benchmark metric to print at the end')
    parser.add_argument(
        '--final-prints-aggregate',
        type=str,
        choices=['all', 'benchmark'],
        default='benchmark',
        help='aggregate all results or only those for benchmark corruptions')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def main():
    args = parse_args()

    assert args.out or args.show or args.show_dir, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out", "--show" or "show-dir"')

    # load config
    cfg = Config.fromfile(args.config)
    cfg.launcher = args.launcher
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    cfg.model.backbone.init_cfg.type = None
    cfg.test_dataloader.dataset.test_mode = True

    cfg.load_from = args.checkpoint
    if args.show or args.show_dir:
        cfg = trigger_visualization_hook(cfg, args)

    # build the runner from config
    if 'runner_type' not in cfg:
        # build the default runner
        runner = Runner.from_cfg(cfg)
    else:
        # build customized runner from the registry
        # if 'runner_type' is set in the cfg
        runner = RUNNERS.build(cfg)

    # add `DumpResults` dummy metric
    if args.out is not None:
        assert args.out.endswith(('.pkl', '.pickle')), \
            'The dump file must be a pkl file.'
        runner.test_evaluator.metrics.append(
            DumpResults(out_file_path=args.out))

    if 'all' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter',
            'saturate'
        ]
    elif 'benchmark' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression'
        ]
    elif 'noise' in args.corruptions:
        corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise']
    elif 'blur' in args.corruptions:
        corruptions = [
            'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur'
        ]
    elif 'weather' in args.corruptions:
        corruptions = ['snow', 'frost', 'fog', 'brightness']
    elif 'digital' in args.corruptions:
        corruptions = [
            'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression'
        ]
    elif 'holdout' in args.corruptions:
        corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate']
    elif 'None' in args.corruptions:
        corruptions = ['None']
        args.severities = [0]
    else:
        corruptions = args.corruptions

    aggregated_results = {}
    for corr_i, corruption in enumerate(corruptions):
        aggregated_results[corruption] = {}
        for sev_i, corruption_severity in enumerate(args.severities):
            # evaluate severity 0 (= no corruption) only once
            if corr_i > 0 and corruption_severity == 0:
                aggregated_results[corruption][0] = \
                    aggregated_results[corruptions[0]][0]
                continue

            test_loader_cfg = copy.deepcopy(cfg.test_dataloader)
            # assign corruption and severity
            if corruption_severity > 0:
                corruption_trans = dict(
                    type='Corrupt',
                    corruption=corruption,
                    severity=corruption_severity)
                # TODO: hard coded "1", we assume that the first step is
                # loading images, which needs to be fixed in the future
                test_loader_cfg.dataset.pipeline.insert(1, corruption_trans)

            test_loader = runner.build_dataloader(test_loader_cfg)

            runner.test_loop.dataloader = test_loader
            # set random seeds
            if args.seed is not None:
                runner.set_randomness(args.seed)

            # print info
            print(f'\nTesting {corruption} at severity {corruption_severity}')

            eval_results = runner.test()
            if args.out:
                eval_results_filename = (
                    osp.splitext(args.out)[0] + '_results' +
                    osp.splitext(args.out)[1])
                aggregated_results[corruption][
                    corruption_severity] = eval_results
                dump(aggregated_results, eval_results_filename)

    rank, _ = get_dist_info()
    if rank == 0:
        eval_results_filename = (
            osp.splitext(args.out)[0] + '_results' + osp.splitext(args.out)[1])
        # print final results
        print('\nAggregated results:')
        prints = args.final_prints
        aggregate = args.final_prints_aggregate

        if cfg.dataset_type == 'VOCDataset':
            get_results(
                eval_results_filename,
                dataset='voc',
                prints=prints,
                aggregate=aggregate)
        else:
            get_results(
                eval_results_filename,
                dataset='coco',
                prints=prints,
                aggregate=aggregate)


if __name__ == '__main__':
    main()