Spaces:
Build error
Build error
File size: 12,540 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from argparse import ArgumentParser
from multiprocessing import Pool
import matplotlib.pyplot as plt
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
def makeplot(rs, ps, outDir, class_name, iou_type):
cs = np.vstack([
np.ones((2, 3)),
np.array([0.31, 0.51, 0.74]),
np.array([0.75, 0.31, 0.30]),
np.array([0.36, 0.90, 0.38]),
np.array([0.50, 0.39, 0.64]),
np.array([1, 0.6, 0]),
])
areaNames = ['allarea', 'small', 'medium', 'large']
types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
for i in range(len(areaNames)):
area_ps = ps[..., i, 0]
figure_title = iou_type + '-' + class_name + '-' + areaNames[i]
aps = [ps_.mean() for ps_ in area_ps]
ps_curve = [
ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps
]
ps_curve.insert(0, np.zeros(ps_curve[0].shape))
fig = plt.figure()
ax = plt.subplot(111)
for k in range(len(types)):
ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5)
ax.fill_between(
rs,
ps_curve[k],
ps_curve[k + 1],
color=cs[k],
label=str(f'[{aps[k]:.3f}]' + types[k]),
)
plt.xlabel('recall')
plt.ylabel('precision')
plt.xlim(0, 1.0)
plt.ylim(0, 1.0)
plt.title(figure_title)
plt.legend()
# plt.show()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def autolabel(ax, rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
if height > 0 and height <= 1: # for percent values
text_label = '{:2.0f}'.format(height * 100)
else:
text_label = '{:2.0f}'.format(height)
ax.annotate(
text_label,
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords='offset points',
ha='center',
va='bottom',
fontsize='x-small',
)
def makebarplot(rs, ps, outDir, class_name, iou_type):
areaNames = ['allarea', 'small', 'medium', 'large']
types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
fig, ax = plt.subplots()
x = np.arange(len(areaNames)) # the areaNames locations
width = 0.60 # the width of the bars
rects_list = []
figure_title = iou_type + '-' + class_name + '-' + 'ap bar plot'
for i in range(len(types) - 1):
type_ps = ps[i, ..., 0]
aps = [ps_.mean() for ps_ in type_ps.T]
rects_list.append(
ax.bar(
x - width / 2 + (i + 1) * width / len(types),
aps,
width / len(types),
label=types[i],
))
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Mean Average Precision (mAP)')
ax.set_title(figure_title)
ax.set_xticks(x)
ax.set_xticklabels(areaNames)
ax.legend()
# Add score texts over bars
for rects in rects_list:
autolabel(ax, rects)
# Save plot
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def get_gt_area_group_numbers(cocoEval):
areaRng = cocoEval.params.areaRng
areaRngStr = [str(aRng) for aRng in areaRng]
areaRngLbl = cocoEval.params.areaRngLbl
areaRngStr2areaRngLbl = dict(zip(areaRngStr, areaRngLbl))
areaRngLbl2Number = dict.fromkeys(areaRngLbl, 0)
for evalImg in cocoEval.evalImgs:
if evalImg:
for gtIgnore in evalImg['gtIgnore']:
if not gtIgnore:
aRngLbl = areaRngStr2areaRngLbl[str(evalImg['aRng'])]
areaRngLbl2Number[aRngLbl] += 1
return areaRngLbl2Number
def make_gt_area_group_numbers_plot(cocoEval, outDir, verbose=True):
areaRngLbl2Number = get_gt_area_group_numbers(cocoEval)
areaRngLbl = areaRngLbl2Number.keys()
if verbose:
print('number of annotations per area group:', areaRngLbl2Number)
# Init figure
fig, ax = plt.subplots()
x = np.arange(len(areaRngLbl)) # the areaNames locations
width = 0.60 # the width of the bars
figure_title = 'number of annotations per area group'
rects = ax.bar(x, areaRngLbl2Number.values(), width)
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Number of annotations')
ax.set_title(figure_title)
ax.set_xticks(x)
ax.set_xticklabels(areaRngLbl)
# Add score texts over bars
autolabel(ax, rects)
# Save plot
fig.tight_layout()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def make_gt_area_histogram_plot(cocoEval, outDir):
n_bins = 100
areas = [ann['area'] for ann in cocoEval.cocoGt.anns.values()]
# init figure
figure_title = 'gt annotation areas histogram plot'
fig, ax = plt.subplots()
# Set the number of bins
ax.hist(np.sqrt(areas), bins=n_bins)
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_xlabel('Squareroot Area')
ax.set_ylabel('Number of annotations')
ax.set_title(figure_title)
# Save plot
fig.tight_layout()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def analyze_individual_category(k,
cocoDt,
cocoGt,
catId,
iou_type,
areas=None):
nm = cocoGt.loadCats(catId)[0]
print(f'--------------analyzing {k + 1}-{nm["name"]}---------------')
ps_ = {}
dt = copy.deepcopy(cocoDt)
nm = cocoGt.loadCats(catId)[0]
imgIds = cocoGt.getImgIds()
dt_anns = dt.dataset['annotations']
select_dt_anns = []
for ann in dt_anns:
if ann['category_id'] == catId:
select_dt_anns.append(ann)
dt.dataset['annotations'] = select_dt_anns
dt.createIndex()
# compute precision but ignore superclass confusion
gt = copy.deepcopy(cocoGt)
child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
for idx, ann in enumerate(gt.dataset['annotations']):
if ann['category_id'] in child_catIds and ann['category_id'] != catId:
gt.dataset['annotations'][idx]['ignore'] = 1
gt.dataset['annotations'][idx]['iscrowd'] = 1
gt.dataset['annotations'][idx]['category_id'] = catId
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.maxDets = [100]
cocoEval.params.iouThrs = [0.1]
cocoEval.params.useCats = 1
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]], [areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :]
ps_['ps_supercategory'] = ps_supercategory
# compute precision but ignore any class confusion
gt = copy.deepcopy(cocoGt)
for idx, ann in enumerate(gt.dataset['annotations']):
if ann['category_id'] != catId:
gt.dataset['annotations'][idx]['ignore'] = 1
gt.dataset['annotations'][idx]['iscrowd'] = 1
gt.dataset['annotations'][idx]['category_id'] = catId
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.maxDets = [100]
cocoEval.params.iouThrs = [0.1]
cocoEval.params.useCats = 1
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]], [areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :]
ps_['ps_allcategory'] = ps_allcategory
return k, ps_
def analyze_results(res_file,
ann_file,
res_types,
out_dir,
extraplots=None,
areas=None):
for res_type in res_types:
assert res_type in ['bbox', 'segm']
if areas:
assert len(areas) == 3, '3 integers should be specified as areas, \
representing 3 area regions'
directory = os.path.dirname(out_dir + '/')
if not os.path.exists(directory):
print(f'-------------create {out_dir}-----------------')
os.makedirs(directory)
cocoGt = COCO(ann_file)
cocoDt = cocoGt.loadRes(res_file)
imgIds = cocoGt.getImgIds()
for res_type in res_types:
res_out_dir = out_dir + '/' + res_type + '/'
res_directory = os.path.dirname(res_out_dir)
if not os.path.exists(res_directory):
print(f'-------------create {res_out_dir}-----------------')
os.makedirs(res_directory)
iou_type = res_type
cocoEval = COCOeval(
copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.iouThrs = [0.75, 0.5, 0.1]
cocoEval.params.maxDets = [100]
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]],
[areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps = cocoEval.eval['precision']
ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))])
catIds = cocoGt.getCatIds()
recThrs = cocoEval.params.recThrs
with Pool(processes=48) as pool:
args = [(k, cocoDt, cocoGt, catId, iou_type, areas)
for k, catId in enumerate(catIds)]
analyze_results = pool.starmap(analyze_individual_category, args)
for k, catId in enumerate(catIds):
nm = cocoGt.loadCats(catId)[0]
print(f'--------------saving {k + 1}-{nm["name"]}---------------')
analyze_result = analyze_results[k]
assert k == analyze_result[0]
ps_supercategory = analyze_result[1]['ps_supercategory']
ps_allcategory = analyze_result[1]['ps_allcategory']
# compute precision but ignore superclass confusion
ps[3, :, k, :, :] = ps_supercategory
# compute precision but ignore any class confusion
ps[4, :, k, :, :] = ps_allcategory
# fill in background and false negative errors and plot
ps[ps == -1] = 0
ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0
ps[6, :, k, :, :] = 1.0
makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type)
if extraplots:
makebarplot(recThrs, ps[:, :, k], res_out_dir, nm['name'],
iou_type)
makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
if extraplots:
makebarplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
make_gt_area_group_numbers_plot(
cocoEval=cocoEval, outDir=res_out_dir, verbose=True)
make_gt_area_histogram_plot(cocoEval=cocoEval, outDir=res_out_dir)
def main():
parser = ArgumentParser(description='COCO Error Analysis Tool')
parser.add_argument('result', help='result file (json format) path')
parser.add_argument('out_dir', help='dir to save analyze result images')
parser.add_argument(
'--ann',
default='data/coco/annotations/instances_val2017.json',
help='annotation file path')
parser.add_argument(
'--types', type=str, nargs='+', default=['bbox'], help='result types')
parser.add_argument(
'--extraplots',
action='store_true',
help='export extra bar/stat plots')
parser.add_argument(
'--areas',
type=int,
nargs='+',
default=[1024, 9216, 10000000000],
help='area regions')
args = parser.parse_args()
analyze_results(
args.result,
args.ann,
args.types,
out_dir=args.out_dir,
extraplots=args.extraplots,
areas=args.areas)
if __name__ == '__main__':
main()
|