Spaces:
Build error
Build error
File size: 15,067 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os.path as osp
from multiprocessing import Pool
import mmcv
import numpy as np
from mmengine.config import Config, DictAction
from mmengine.fileio import load
from mmengine.registry import init_default_scope
from mmengine.runner import Runner
from mmengine.structures import InstanceData, PixelData
from mmengine.utils import ProgressBar, check_file_exist, mkdir_or_exist
from mmdet.datasets import get_loading_pipeline
from mmdet.evaluation import eval_map
from mmdet.registry import DATASETS, RUNNERS
from mmdet.structures import DetDataSample
from mmdet.utils import replace_cfg_vals, update_data_root
from mmdet.visualization import DetLocalVisualizer
def bbox_map_eval(det_result, annotation, nproc=4):
"""Evaluate mAP of single image det result.
Args:
det_result (list[list]): [[cls1_det, cls2_det, ...], ...].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.
annotation (dict): Ground truth annotations where keys of
annotations are:
- bboxes: numpy array of shape (n, 4)
- labels: numpy array of shape (n, )
- bboxes_ignore (optional): numpy array of shape (k, 4)
- labels_ignore (optional): numpy array of shape (k, )
nproc (int): Processes used for computing mAP.
Default: 4.
Returns:
float: mAP
"""
# use only bbox det result
if isinstance(det_result, tuple):
bbox_det_result = [det_result[0]]
else:
bbox_det_result = [det_result]
# mAP
iou_thrs = np.linspace(
.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
processes = []
workers = Pool(processes=nproc)
for thr in iou_thrs:
p = workers.apply_async(eval_map, (bbox_det_result, [annotation]), {
'iou_thr': thr,
'logger': 'silent',
'nproc': 1
})
processes.append(p)
workers.close()
workers.join()
mean_aps = []
for p in processes:
mean_aps.append(p.get()[0])
return sum(mean_aps) / len(mean_aps)
class ResultVisualizer:
"""Display and save evaluation results.
Args:
show (bool): Whether to show the image. Default: True.
wait_time (float): Value of waitKey param. Default: 0.
score_thr (float): Minimum score of bboxes to be shown.
Default: 0.
runner (:obj:`Runner`): The runner of the visualization process.
"""
def __init__(self, show=False, wait_time=0, score_thr=0, runner=None):
self.show = show
self.wait_time = wait_time
self.score_thr = score_thr
self.visualizer = DetLocalVisualizer()
self.runner = runner
self.evaluator = runner.test_evaluator
def _save_image_gts_results(self,
dataset,
results,
performances,
out_dir=None,
task='det'):
"""Display or save image with groung truths and predictions from a
model.
Args:
dataset (Dataset): A PyTorch dataset.
results (list): Object detection or panoptic segmentation
results from test results pkl file.
performances (dict): A dict contains samples's indices
in dataset and model's performance on them.
out_dir (str, optional): The filename to write the image.
Defaults: None.
task (str): The task to be performed. Defaults: 'det'
"""
mkdir_or_exist(out_dir)
for performance_info in performances:
index, performance = performance_info
data_info = dataset[index]
data_info['gt_instances'] = data_info['instances']
# calc save file path
filename = data_info['img_path']
fname, name = osp.splitext(osp.basename(filename))
save_filename = fname + '_' + str(round(performance, 3)) + name
out_file = osp.join(out_dir, save_filename)
if task == 'det':
gt_instances = InstanceData()
gt_instances.bboxes = [
d['bbox'] for d in data_info['gt_instances']
]
gt_instances.labels = [
d['bbox_label'] for d in data_info['gt_instances']
]
pred_instances = InstanceData()
pred_instances.bboxes = results[index]['pred_instances'][
'bboxes']
pred_instances.labels = results[index]['pred_instances'][
'labels']
pred_instances.scores = results[index]['pred_instances'][
'scores']
data_samples = DetDataSample()
data_samples.pred_instances = pred_instances
data_samples.gt_instances = gt_instances
elif task == 'seg':
gt_panoptic_seg = PixelData()
gt_panoptic_seg.sem_seg = [
d['gt_seg_map'] for d in data_info['gt_instances']
]
pred_panoptic_seg = PixelData()
pred_panoptic_seg.sem_seg = results[index][
'pred_panoptic_seg']['sem_seg']
data_samples = DetDataSample()
data_samples.pred_panoptic_seg = pred_panoptic_seg
data_samples.gt_panoptic_seg = gt_panoptic_seg
img = mmcv.imread(filename, channel_order='rgb')
self.visualizer.add_datasample(
'image',
img,
data_samples,
show=self.show,
draw_gt=False,
pred_score_thr=self.score_thr,
out_file=out_file)
def evaluate_and_show(self,
dataset,
results,
topk=20,
show_dir='work_dir'):
"""Evaluate and show results.
Args:
dataset (Dataset): A PyTorch dataset.
results (list): Object detection or panoptic segmentation
results from test results pkl file.
topk (int): Number of the highest topk and
lowest topk after evaluation index sorting. Default: 20.
show_dir (str, optional): The filename to write the image.
Default: 'work_dir'
"""
self.visualizer.dataset_meta = dataset.metainfo
assert topk > 0
if (topk * 2) > len(dataset):
topk = len(dataset) // 2
good_dir = osp.abspath(osp.join(show_dir, 'good'))
bad_dir = osp.abspath(osp.join(show_dir, 'bad'))
if 'pred_panoptic_seg' in results[0].keys():
good_samples, bad_samples = self.panoptic_evaluate(
dataset, results, topk=topk)
self._save_image_gts_results(
dataset, results, good_samples, good_dir, task='seg')
self._save_image_gts_results(
dataset, results, bad_samples, bad_dir, task='seg')
elif 'pred_instances' in results[0].keys():
good_samples, bad_samples = self.detection_evaluate(
dataset, results, topk=topk)
self._save_image_gts_results(
dataset, results, good_samples, good_dir, task='det')
self._save_image_gts_results(
dataset, results, bad_samples, bad_dir, task='det')
else:
raise 'expect \'pred_panoptic_seg\' or \'pred_instances\' \
in dict result'
def detection_evaluate(self, dataset, results, topk=20, eval_fn=None):
"""Evaluation for object detection.
Args:
dataset (Dataset): A PyTorch dataset.
results (list): Object detection results from test
results pkl file.
topk (int): Number of the highest topk and
lowest topk after evaluation index sorting. Default: 20.
eval_fn (callable, optional): Eval function, Default: None.
Returns:
tuple: A tuple contains good samples and bad samples.
good_mAPs (dict[int, float]): A dict contains good
samples's indices in dataset and model's
performance on them.
bad_mAPs (dict[int, float]): A dict contains bad
samples's indices in dataset and model's
performance on them.
"""
if eval_fn is None:
eval_fn = bbox_map_eval
else:
assert callable(eval_fn)
prog_bar = ProgressBar(len(results))
_mAPs = {}
data_info = {}
for i, (result, ) in enumerate(zip(results)):
# self.dataset[i] should not call directly
# because there is a risk of mismatch
data_info = dataset.prepare_data(i)
data_info['bboxes'] = data_info['gt_bboxes'].tensor
data_info['labels'] = data_info['gt_bboxes_labels']
pred = result['pred_instances']
pred_bboxes = pred['bboxes'].cpu().numpy()
pred_scores = pred['scores'].cpu().numpy()
pred_labels = pred['labels'].cpu().numpy()
dets = []
for label in range(len(dataset.metainfo['classes'])):
index = np.where(pred_labels == label)[0]
pred_bbox_scores = np.hstack(
[pred_bboxes[index], pred_scores[index].reshape((-1, 1))])
dets.append(pred_bbox_scores)
mAP = eval_fn(dets, data_info)
_mAPs[i] = mAP
prog_bar.update()
# descending select topk image
_mAPs = list(sorted(_mAPs.items(), key=lambda kv: kv[1]))
good_mAPs = _mAPs[-topk:]
bad_mAPs = _mAPs[:topk]
return good_mAPs, bad_mAPs
def panoptic_evaluate(self, dataset, results, topk=20):
"""Evaluation for panoptic segmentation.
Args:
dataset (Dataset): A PyTorch dataset.
results (list): Panoptic segmentation results from test
results pkl file.
topk (int): Number of the highest topk and
lowest topk after evaluation index sorting. Default: 20.
Returns:
tuple: A tuple contains good samples and bad samples.
good_pqs (dict[int, float]): A dict contains good
samples's indices in dataset and model's
performance on them.
bad_pqs (dict[int, float]): A dict contains bad
samples's indices in dataset and model's
performance on them.
"""
pqs = {}
prog_bar = ProgressBar(len(results))
for i in range(len(results)):
data_sample = {}
for k in dataset[i].keys():
data_sample[k] = dataset[i][k]
for k in results[i].keys():
data_sample[k] = results[i][k]
self.evaluator.process([data_sample])
metrics = self.evaluator.evaluate(1)
pqs[i] = metrics['coco_panoptic/PQ']
prog_bar.update()
# descending select topk image
pqs = list(sorted(pqs.items(), key=lambda kv: kv[1]))
good_pqs = pqs[-topk:]
bad_pqs = pqs[:topk]
return good_pqs, bad_pqs
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet eval image prediction result for each')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test pkl result')
parser.add_argument(
'show_dir', help='directory where painted images will be saved')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--wait-time',
type=float,
default=0,
help='the interval of show (s), 0 is block')
parser.add_argument(
'--topk',
default=20,
type=int,
help='saved Number of the highest topk '
'and lowest topk after index sorting')
parser.add_argument(
'--show-score-thr',
type=float,
default=0,
help='score threshold (default: 0.)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
check_file_exist(args.prediction_path)
cfg = Config.fromfile(args.config)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMDET_DATASETS
update_data_root(cfg)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmdet'))
cfg.test_dataloader.dataset.test_mode = True
cfg.test_dataloader.pop('batch_size', 0)
if cfg.train_dataloader.dataset.type in ('MultiImageMixDataset',
'ClassBalancedDataset',
'RepeatDataset'):
cfg.test_dataloader.dataset.pipeline = get_loading_pipeline(
cfg.train_dataloader.dataset.dataset.pipeline)
elif cfg.train_dataloader.dataset.type in ('ConcatDataset', ):
cfg.test_dataloader.dataset.pipeline = get_loading_pipeline(
cfg.train_dataloader.dataset.datasets[0].pipeline)
else:
cfg.test_dataloader.dataset.pipeline = get_loading_pipeline(
cfg.train_dataloader.dataset.pipeline)
dataset = DATASETS.build(cfg.test_dataloader.dataset)
outputs = load(args.prediction_path)
cfg.work_dir = args.show_dir
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
result_visualizer = ResultVisualizer(args.show, args.wait_time,
args.show_score_thr, runner)
result_visualizer.evaluate_and_show(
dataset, outputs, topk=args.topk, show_dir=args.show_dir)
if __name__ == '__main__':
main()
|