Spaces:
Build error
Build error
File size: 31,771 Bytes
28c256d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from https://github.com/microsoft/GLIP/blob/main/maskrcnn_benchmark/utils/fuse_helper.py # noqa
# and https://github.com/microsoft/GLIP/blob/main/maskrcnn_benchmark/modeling/rpn/modeling_bert.py # noqa
import math
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from mmcv.cnn.bricks import DropPath
from torch import Tensor
try:
from transformers import BertConfig, BertPreTrainedModel
from transformers.modeling_utils import apply_chunking_to_forward
from transformers.models.bert.modeling_bert import \
BertAttention as HFBertAttention
from transformers.models.bert.modeling_bert import \
BertIntermediate as HFBertIntermediate
from transformers.models.bert.modeling_bert import \
BertOutput as HFBertOutput
except ImportError:
BertConfig = None
BertPreTrainedModel = object
apply_chunking_to_forward = None
HFBertAttention = object
HFBertIntermediate = object
HFBertOutput = object
MAX_CLAMP_VALUE = 50000
def permute_and_flatten(layer: Tensor, N: int, A: int, C: int, H: int,
W: int) -> Tensor:
"""Permute and then flatten a tensor,
from size (N, A, C, H, W) to (N, H * W * A, C).
Args:
layer (Tensor): Tensor of shape (N, C, H, W).
N (int): Batch size.
A (int): Number of attention heads.
C (int): Number of channels.
H (int): Height of feature map.
W (int): Width of feature map.
Returns:
Tensor: A Tensor of shape (N, H * W * A, C).
"""
layer = layer.view(N, A, C, H, W)
layer = layer.permute(0, 3, 4, 1, 2)
layer = layer.reshape(N, -1, C)
return layer
def clamp_values(vector: Tensor) -> Tensor:
"""Clamp the values of a vector to the range [-MAX_CLAMP_VALUE,
MAX_CLAMP_VALUE].
Args:
vector (Tensor): Tensor of shape (N, C, H, W).
Returns:
Tensor: A Tensor of shape (N, C, H, W) with clamped values.
"""
vector = torch.clamp(vector, min=-MAX_CLAMP_VALUE, max=MAX_CLAMP_VALUE)
return vector
class BiMultiHeadAttention(nn.Module):
"""Bidirectional fusion Multi-Head Attention layer.
Args:
v_dim (int): The dimension of the vision input.
l_dim (int): The dimension of the language input.
embed_dim (int): The embedding dimension for the attention operation.
num_heads (int): The number of attention heads.
dropout (float, optional): The dropout probability. Defaults to 0.1.
"""
def __init__(self,
v_dim: int,
l_dim: int,
embed_dim: int,
num_heads: int,
dropout: float = 0.1):
super(BiMultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.v_dim = v_dim
self.l_dim = l_dim
assert (
self.head_dim * self.num_heads == self.embed_dim
), 'embed_dim must be divisible by num_heads ' \
f'(got `embed_dim`: {self.embed_dim} ' \
f'and `num_heads`: {self.num_heads}).'
self.scale = self.head_dim**(-0.5)
self.dropout = dropout
self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
self.stable_softmax_2d = False
self.clamp_min_for_underflow = True
self.clamp_max_for_overflow = True
self._reset_parameters()
def _shape(self, tensor: Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def _reset_parameters(self):
nn.init.xavier_uniform_(self.v_proj.weight)
self.v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.l_proj.weight)
self.l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_v_proj.weight)
self.values_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_l_proj.weight)
self.values_l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_v_proj.weight)
self.out_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_l_proj.weight)
self.out_l_proj.bias.data.fill_(0)
def forward(
self,
vision: Tensor,
lang: Tensor,
attention_mask_v: Optional[Tensor] = None,
attention_mask_l: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
bsz, tgt_len, _ = vision.size()
query_states = self.v_proj(vision) * self.scale
key_states = self._shape(self.l_proj(lang), -1, bsz)
value_v_states = self._shape(self.values_v_proj(vision), -1, bsz)
value_l_states = self._shape(self.values_l_proj(lang), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len,
bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_v_states = value_v_states.view(*proj_shape)
value_l_states = value_l_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f'Attention weights should be of '
f'size {(bsz * self.num_heads, tgt_len, src_len)}, '
f'but is {attn_weights.size()}')
if self.stable_softmax_2d:
attn_weights = attn_weights - attn_weights.max()
if self.clamp_min_for_underflow:
# Do not increase -50000, data type half has quite limited range
attn_weights = torch.clamp(attn_weights, min=-MAX_CLAMP_VALUE)
if self.clamp_max_for_overflow:
# Do not increase 50000, data type half has quite limited range
attn_weights = torch.clamp(attn_weights, max=MAX_CLAMP_VALUE)
attn_weights_T = attn_weights.transpose(1, 2)
attn_weights_l = (
attn_weights_T -
torch.max(attn_weights_T, dim=-1, keepdim=True)[0])
if self.clamp_min_for_underflow:
# Do not increase -50000, data type half has quite limited range
attn_weights_l = torch.clamp(attn_weights_l, min=-MAX_CLAMP_VALUE)
if self.clamp_max_for_overflow:
# Do not increase 50000, data type half has quite limited range
attn_weights_l = torch.clamp(attn_weights_l, max=MAX_CLAMP_VALUE)
if attention_mask_v is not None:
attention_mask_v = (
attention_mask_v[:, None,
None, :].repeat(1, self.num_heads, 1,
1).flatten(0, 1))
attn_weights_l.masked_fill_(attention_mask_v, float('-inf'))
attn_weights_l = attn_weights_l.softmax(dim=-1)
if attention_mask_l is not None:
assert (attention_mask_l.dim() == 2)
attention_mask = attention_mask_l.unsqueeze(1).unsqueeze(1)
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len)
attention_mask = attention_mask.masked_fill(
attention_mask == 0, -9e15)
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError('Attention mask should be of '
f'size {(bsz, 1, tgt_len, src_len)}')
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
src_len)
attn_weights_v = nn.functional.softmax(attn_weights, dim=-1)
attn_probs_v = F.dropout(
attn_weights_v, p=self.dropout, training=self.training)
attn_probs_l = F.dropout(
attn_weights_l, p=self.dropout, training=self.training)
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
if attn_output_v.size() != (bsz * self.num_heads, tgt_len,
self.head_dim):
raise ValueError(
'`attn_output_v` should be of '
f'size {(bsz, self.num_heads, tgt_len, self.head_dim)}, '
f'but is {attn_output_v.size()}')
if attn_output_l.size() != (bsz * self.num_heads, src_len,
self.head_dim):
raise ValueError(
'`attn_output_l` should be of size '
f'{(bsz, self.num_heads, src_len, self.head_dim)}, '
f'but is {attn_output_l.size()}')
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len,
self.head_dim)
attn_output_v = attn_output_v.transpose(1, 2)
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len,
self.head_dim)
attn_output_l = attn_output_l.transpose(1, 2)
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
attn_output_v = self.out_v_proj(attn_output_v)
attn_output_l = self.out_l_proj(attn_output_l)
return attn_output_v, attn_output_l
class BiAttentionBlock(nn.Module):
"""BiAttentionBlock Module:
First, multi-level visual features are concat; Then the concat visual
feature and lang feature are fused by attention; Finally the newly visual
feature are split into multi levels.
Args:
v_dim (int): The dimension of the visual features.
l_dim (int): The dimension of the language feature.
embed_dim (int): The embedding dimension for the attention operation.
num_heads (int): The number of attention heads.
dropout (float, optional): The dropout probability. Defaults to 0.1.
drop_path (float, optional): The drop path probability.
Defaults to 0.0.
init_values (float, optional):
The initial value for the scaling parameter.
Defaults to 1e-4.
"""
def __init__(self,
v_dim: int,
l_dim: int,
embed_dim: int,
num_heads: int,
dropout: float = 0.1,
drop_path: float = .0,
init_values: float = 1e-4):
super().__init__()
# pre layer norm
self.layer_norm_v = nn.LayerNorm(v_dim)
self.layer_norm_l = nn.LayerNorm(l_dim)
self.attn = BiMultiHeadAttention(
v_dim=v_dim,
l_dim=l_dim,
embed_dim=embed_dim,
num_heads=num_heads,
dropout=dropout)
# add layer scale for training stability
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.gamma_v = nn.Parameter(
init_values * torch.ones(v_dim), requires_grad=True)
self.gamma_l = nn.Parameter(
init_values * torch.ones(l_dim), requires_grad=True)
def forward(self,
vf0: Tensor,
vf1: Tensor,
vf2: Tensor,
vf3: Tensor,
vf4: Tensor,
lang_feature: Tensor,
attention_mask_l=None):
visual_features = [vf0, vf1, vf2, vf3, vf4]
size_per_level, visual_features_flatten = [], []
for i, feat_per_level in enumerate(visual_features):
bs, c, h, w = feat_per_level.shape
size_per_level.append([h, w])
feat = permute_and_flatten(feat_per_level, bs, -1, c, h, w)
visual_features_flatten.append(feat)
visual_features_flatten = torch.cat(visual_features_flatten, dim=1)
new_v, new_lang_feature = self.single_attention_call(
visual_features_flatten,
lang_feature,
attention_mask_l=attention_mask_l)
# [bs, N, C] -> [bs, C, N]
new_v = new_v.transpose(1, 2).contiguous()
start = 0
# fvfs is mean fusion_visual_features
fvfs = []
for (h, w) in size_per_level:
new_v_per_level = new_v[:, :,
start:start + h * w].view(bs, -1, h,
w).contiguous()
fvfs.append(new_v_per_level)
start += h * w
return fvfs[0], fvfs[1], fvfs[2], fvfs[3], fvfs[4], new_lang_feature
def single_attention_call(
self,
visual: Tensor,
lang: Tensor,
attention_mask_v: Optional[Tensor] = None,
attention_mask_l: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor]:
"""Perform a single attention call between the visual and language
inputs.
Args:
visual (Tensor): The visual input tensor.
lang (Tensor): The language input tensor.
attention_mask_v (Optional[Tensor]):
An optional attention mask tensor for the visual input.
attention_mask_l (Optional[Tensor]):
An optional attention mask tensor for the language input.
Returns:
Tuple[Tensor, Tensor]: A tuple containing the updated
visual and language tensors after the attention call.
"""
visual = self.layer_norm_v(visual)
lang = self.layer_norm_l(lang)
delta_v, delta_l = self.attn(
visual,
lang,
attention_mask_v=attention_mask_v,
attention_mask_l=attention_mask_l)
# visual, lang = visual + delta_v, l + delta_l
visual = visual + self.drop_path(self.gamma_v * delta_v)
lang = lang + self.drop_path(self.gamma_l * delta_l)
return visual, lang
class SingleScaleBiAttentionBlock(BiAttentionBlock):
"""This is a single-scale implementation of `BiAttentionBlock`.
The only differenece between it and `BiAttentionBlock` is that the
`forward` function of `SingleScaleBiAttentionBlock` only accepts a single
flatten visual feature map, while the `forward` function in
`BiAttentionBlock` accepts multiple visual feature maps.
"""
def forward(self,
visual_feature: Tensor,
lang_feature: Tensor,
attention_mask_v=None,
attention_mask_l=None):
"""Single-scale forward pass.
Args:
visual_feature (Tensor): The visual input tensor. Tensor of
shape (bs, patch_len, ch).
lang_feature (Tensor): The language input tensor. Tensor of
shape (bs, text_len, ch).
attention_mask_v (_type_, optional): Visual feature attention
mask. Defaults to None.
attention_mask_l (_type_, optional): Language feature attention
mask.Defaults to None.
"""
new_v, new_lang_feature = self.single_attention_call(
visual_feature,
lang_feature,
attention_mask_v=attention_mask_v,
attention_mask_l=attention_mask_l)
return new_v, new_lang_feature
class VLFuse(nn.Module):
"""Early Fusion Module.
Args:
v_dim (int): Dimension of visual features.
l_dim (int): Dimension of language features.
embed_dim (int): The embedding dimension for the attention operation.
num_heads (int): Number of attention heads.
dropout (float): Dropout probability.
drop_path (float): Drop path probability.
use_checkpoint (bool): Whether to use PyTorch's checkpoint function.
"""
def __init__(self,
v_dim: int = 256,
l_dim: int = 768,
embed_dim: int = 2048,
num_heads: int = 8,
dropout: float = 0.1,
drop_path: float = 0.0,
use_checkpoint: bool = False):
super().__init__()
self.use_checkpoint = use_checkpoint
self.b_attn = BiAttentionBlock(
v_dim=v_dim,
l_dim=l_dim,
embed_dim=embed_dim,
num_heads=num_heads,
dropout=dropout,
drop_path=drop_path,
init_values=1.0 / 6.0)
def forward(self, x: dict) -> dict:
"""Forward pass of the VLFuse module."""
visual_features = x['visual']
language_dict_features = x['lang']
if self.use_checkpoint:
# vf is mean visual_features
# checkpoint does not allow complex data structures as input,
# such as list, so we must split them.
vf0, vf1, vf2, vf3, vf4, language_features = checkpoint.checkpoint(
self.b_attn, *visual_features,
language_dict_features['hidden'],
language_dict_features['masks'])
else:
vf0, vf1, vf2, vf3, vf4, language_features = self.b_attn(
*visual_features, language_dict_features['hidden'],
language_dict_features['masks'])
language_dict_features['hidden'] = language_features
fused_language_dict_features = language_dict_features
features_dict = {
'visual': [vf0, vf1, vf2, vf3, vf4],
'lang': fused_language_dict_features
}
return features_dict
class BertEncoderLayer(BertPreTrainedModel):
"""A modified version of the `BertLayer` class from the
`transformers.models.bert.modeling_bert` module.
Args:
config (:class:`~transformers.BertConfig`):
The configuration object that
contains various parameters for the model.
clamp_min_for_underflow (bool, optional):
Whether to clamp the minimum value of the hidden states
to prevent underflow. Defaults to `False`.
clamp_max_for_overflow (bool, optional):
Whether to clamp the maximum value of the hidden states
to prevent overflow. Defaults to `False`.
"""
def __init__(self,
config: BertConfig,
clamp_min_for_underflow: bool = False,
clamp_max_for_overflow: bool = False):
super().__init__(config)
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config, clamp_min_for_underflow,
clamp_max_for_overflow)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self, inputs: Dict[str, Dict[str, torch.Tensor]]
) -> Dict[str, Dict[str, torch.Tensor]]:
"""Applies the BertEncoderLayer to the input features."""
language_dict_features = inputs['lang']
hidden_states = language_dict_features['hidden']
attention_mask = language_dict_features['masks']
device = hidden_states.device
input_shape = hidden_states.size()[:-1]
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, device)
self_attention_outputs = self.attention(
hidden_states,
extended_attention_mask,
None,
output_attentions=False,
past_key_value=None)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:]
layer_output = apply_chunking_to_forward(self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output)
outputs = (layer_output, ) + outputs
hidden_states = outputs[0]
language_dict_features['hidden'] = hidden_states
features_dict = {
'visual': inputs['visual'],
'lang': language_dict_features
}
return features_dict
def feed_forward_chunk(self, attention_output: Tensor) -> Tensor:
"""Applies the intermediate and output layers of the BertEncoderLayer
to a chunk of the input sequence."""
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# The following code is the same as the Huggingface code,
# with the only difference being the additional clamp operation.
class BertSelfAttention(nn.Module):
"""BERT self-attention layer from Huggingface transformers.
Compared to the BertSelfAttention of Huggingface, only add the clamp.
Args:
config (:class:`~transformers.BertConfig`):
The configuration object that
contains various parameters for the model.
clamp_min_for_underflow (bool, optional):
Whether to clamp the minimum value of the hidden states
to prevent underflow. Defaults to `False`.
clamp_max_for_overflow (bool, optional):
Whether to clamp the maximum value of the hidden states
to prevent overflow. Defaults to `False`.
"""
def __init__(self,
config: BertConfig,
clamp_min_for_underflow: bool = False,
clamp_max_for_overflow: bool = False):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and \
not hasattr(config, 'embedding_size'):
raise ValueError(f'The hidden size ({config.hidden_size}) is '
'not a multiple of the number of attention '
f'heads ({config.num_attention_heads})')
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size /
config.num_attention_heads)
self.all_head_size = self.num_attention_heads * \
self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config,
'position_embedding_type',
'absolute')
if self.position_embedding_type == 'relative_key' or \
self.position_embedding_type == 'relative_key_query':
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(
2 * config.max_position_embeddings - 1,
self.attention_head_size)
self.clamp_min_for_underflow = clamp_min_for_underflow
self.clamp_max_for_overflow = clamp_max_for_overflow
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: Tensor) -> Tensor:
"""Transpose the dimensions of `x`."""
new_x_shape = x.size()[:-1] + (self.num_attention_heads,
self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: Tensor,
attention_mask: Optional[Tensor] = None,
head_mask: Optional[Tensor] = None,
encoder_hidden_states: Optional[Tensor] = None,
encoder_attention_mask: Optional[Tensor] = None,
past_key_value: Optional[Tuple[Tensor, Tensor]] = None,
output_attentions: bool = False,
) -> Tuple[Tensor, ...]:
"""Perform a forward pass through the BERT self-attention layer."""
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(
self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(
self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key"
# to get the raw attention scores.
attention_scores = torch.matmul(query_layer,
key_layer.transpose(-1, -2))
if self.position_embedding_type == 'relative_key' or \
self.position_embedding_type == 'relative_key_query':
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(
seq_length, dtype=torch.long,
device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(
seq_length, dtype=torch.long,
device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(
distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(
dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == 'relative_key':
relative_position_scores = torch.einsum(
'bhld,lrd->bhlr', query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == 'relative_key_query':
relative_position_scores_query = torch.einsum(
'bhld,lrd->bhlr', query_layer, positional_embedding)
relative_position_scores_key = torch.einsum(
'bhrd,lrd->bhlr', key_layer, positional_embedding)
attention_scores = attention_scores + \
relative_position_scores_query + \
relative_position_scores_key
attention_scores = attention_scores / math.sqrt(
self.attention_head_size)
if self.clamp_min_for_underflow:
attention_scores = torch.clamp(
attention_scores, min=-MAX_CLAMP_VALUE
) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attention_scores = torch.clamp(
attention_scores, max=MAX_CLAMP_VALUE
) # Do not increase 50000, data type half has quite limited range
if attention_mask is not None:
# Apply the attention mask is
# (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (
self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,
attention_probs) if output_attentions else (context_layer, )
if self.is_decoder:
outputs = outputs + (past_key_value, )
return outputs
class BertAttention(HFBertAttention):
"""BertAttention is made up of self-attention and intermediate+output.
Compared to the BertAttention of Huggingface, only add the clamp.
Args:
config (:class:`~transformers.BertConfig`):
The configuration object that
contains various parameters for the model.
clamp_min_for_underflow (bool, optional):
Whether to clamp the minimum value of the hidden states
to prevent underflow. Defaults to `False`.
clamp_max_for_overflow (bool, optional):
Whether to clamp the maximum value of the hidden states
to prevent overflow. Defaults to `False`.
"""
def __init__(self,
config: BertConfig,
clamp_min_for_underflow: bool = False,
clamp_max_for_overflow: bool = False):
super().__init__(config)
self.self = BertSelfAttention(config, clamp_min_for_underflow,
clamp_max_for_overflow)
class BertIntermediate(HFBertIntermediate):
"""Modified from transformers.models.bert.modeling_bert.BertIntermediate.
Compared to the BertIntermediate of Huggingface, only add the clamp.
"""
def forward(self, hidden_states: Tensor) -> Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = clamp_values(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = clamp_values(hidden_states)
return hidden_states
class BertOutput(HFBertOutput):
"""Modified from transformers.models.bert.modeling_bert.BertOutput.
Compared to the BertOutput of Huggingface, only add the clamp.
"""
def forward(self, hidden_states: Tensor, input_tensor: Tensor) -> Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = clamp_values(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
hidden_states = clamp_values(hidden_states)
return hidden_states
|