File size: 17,200 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor
from torch.nn.modules.utils import _pair

from mmdet.models.losses import accuracy
from mmdet.models.task_modules import SamplingResult
from mmdet.models.task_modules.tracking import embed_similarity
from mmdet.registry import MODELS


@MODELS.register_module()
class RoIEmbedHead(BaseModule):
    """The roi embed head.

    This module is used in multi-object tracking methods, such as MaskTrack
    R-CNN.

    Args:
        num_convs (int): The number of convoluational layers to embed roi
            features. Defaults to 0.
        num_fcs (int): The number of fully connection layers to embed roi
            features. Defaults to 0.
        roi_feat_size (int|tuple(int)): The spatial size of roi features.
            Defaults to 7.
        in_channels (int): The input channel of roi features. Defaults to 256.
        conv_out_channels (int): The output channel of roi features after
            forwarding convoluational layers. Defaults to 256.
        with_avg_pool (bool): Whether use average pooling before passing roi
            features into fully connection layers. Defaults to False.
        fc_out_channels (int): The output channel of roi features after
            forwarding fully connection layers. Defaults to 1024.
        conv_cfg (dict): Config dict for convolution layer. Defaults to None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Defaults to None.
        loss_match (dict): The loss function. Defaults to
            dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
        init_cfg (dict): Configuration of initialization. Defaults to None.
    """

    def __init__(self,
                 num_convs: int = 0,
                 num_fcs: int = 0,
                 roi_feat_size: int = 7,
                 in_channels: int = 256,
                 conv_out_channels: int = 256,
                 with_avg_pool: bool = False,
                 fc_out_channels: int = 1024,
                 conv_cfg: Optional[dict] = None,
                 norm_cfg: Optional[dict] = None,
                 loss_match: dict = dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 init_cfg: Optional[dict] = None,
                 **kwargs):
        super(RoIEmbedHead, self).__init__(init_cfg=init_cfg)
        self.num_convs = num_convs
        self.num_fcs = num_fcs
        self.roi_feat_size = _pair(roi_feat_size)
        self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1]
        self.in_channels = in_channels
        self.conv_out_channels = conv_out_channels
        self.with_avg_pool = with_avg_pool
        self.fc_out_channels = fc_out_channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.loss_match = MODELS.build(loss_match)
        self.fp16_enabled = False

        if self.with_avg_pool:
            self.avg_pool = nn.AvgPool2d(self.roi_feat_size)
        # add convs and fcs
        self.convs, self.fcs, self.last_layer_dim = self._add_conv_fc_branch(
            self.num_convs, self.num_fcs, self.in_channels)
        self.relu = nn.ReLU(inplace=True)

    def _add_conv_fc_branch(
            self, num_branch_convs: int, num_branch_fcs: int,
            in_channels: int) -> Tuple[nn.ModuleList, nn.ModuleList, int]:
        """Add shared or separable branch.

        convs -> avg pool (optional) -> fcs
        """
        last_layer_dim = in_channels
        # add branch specific conv layers
        branch_convs = nn.ModuleList()
        if num_branch_convs > 0:
            for i in range(num_branch_convs):
                conv_in_channels = (
                    last_layer_dim if i == 0 else self.conv_out_channels)
                branch_convs.append(
                    ConvModule(
                        conv_in_channels,
                        self.conv_out_channels,
                        3,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg))
            last_layer_dim = self.conv_out_channels

        # add branch specific fc layers
        branch_fcs = nn.ModuleList()
        if num_branch_fcs > 0:
            if not self.with_avg_pool:
                last_layer_dim *= self.roi_feat_area
            for i in range(num_branch_fcs):
                fc_in_channels = (
                    last_layer_dim if i == 0 else self.fc_out_channels)
                branch_fcs.append(
                    nn.Linear(fc_in_channels, self.fc_out_channels))
            last_layer_dim = self.fc_out_channels

        return branch_convs, branch_fcs, last_layer_dim

    @property
    def custom_activation(self):
        return getattr(self.loss_match, 'custom_activation', False)

    def extract_feat(self, x: Tensor,
                     num_x_per_img: List[int]) -> Tuple[Tensor]:
        """Extract feature from the input `x`, and split the output to a list.

        Args:
            x (Tensor): of shape [N, C, H, W]. N is the number of proposals.
            num_x_per_img (list[int]): The `x` contains proposals of
                multi-images. `num_x_per_img` denotes the number of proposals
                for each image.

        Returns:
            list[Tensor]: Each Tensor denotes the embed features belonging to
            an image in a batch.
        """
        if self.num_convs > 0:
            for conv in self.convs:
                x = conv(x)

        if self.num_fcs > 0:
            if self.with_avg_pool:
                x = self.avg_pool(x)
            x = x.flatten(1)
            for fc in self.fcs:
                x = self.relu(fc(x))
        else:
            x = x.flatten(1)

        x_split = torch.split(x, num_x_per_img, dim=0)
        return x_split

    def forward(
            self, x: Tensor, ref_x: Tensor, num_x_per_img: List[int],
            num_x_per_ref_img: List[int]
    ) -> Tuple[Tuple[Tensor], Tuple[Tensor]]:
        """Computing the similarity scores between `x` and `ref_x`.

        Args:
            x (Tensor): of shape [N, C, H, W]. N is the number of key frame
                proposals.
            ref_x (Tensor): of shape [M, C, H, W]. M is the number of reference
                frame proposals.
            num_x_per_img (list[int]): The `x` contains proposals of
                multi-images. `num_x_per_img` denotes the number of proposals
                for each key image.
            num_x_per_ref_img (list[int]): The `ref_x` contains proposals of
                multi-images. `num_x_per_ref_img` denotes the number of
                proposals for each reference image.

        Returns:
            tuple[tuple[Tensor], tuple[Tensor]]: Each tuple of tensor denotes
            the embed features belonging to an image in a batch.
        """
        x_split = self.extract_feat(x, num_x_per_img)
        ref_x_split = self.extract_feat(ref_x, num_x_per_ref_img)

        return x_split, ref_x_split

    def get_targets(self, sampling_results: List[SamplingResult],
                    gt_instance_ids: List[Tensor],
                    ref_gt_instance_ids: List[Tensor]) -> Tuple[List, List]:
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results.

        Args:
            sampling_results (List[obj:SamplingResult]): Assign results of
                all images in a batch after sampling.
            gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
                all images in a batch, each tensor has shape (num_gt, ).
            ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
                of all reference images in a batch, each tensor has shape
                (num_gt, ).

        Returns:
            Tuple[list[Tensor]]: Ground truth for proposals in a batch.
            Containing the following list of Tensors:

                - track_id_targets (list[Tensor]): The instance ids of
                  Gt_labels for all proposals in a batch, each tensor in list
                  has shape (num_proposals,).
                - track_id_weights (list[Tensor]): Labels_weights for
                  all proposals in a batch, each tensor in list has
                  shape (num_proposals,).
        """
        track_id_targets = []
        track_id_weights = []

        for res, gt_instance_id, ref_gt_instance_id in zip(
                sampling_results, gt_instance_ids, ref_gt_instance_ids):
            pos_instance_ids = gt_instance_id[res.pos_assigned_gt_inds]
            pos_match_id = gt_instance_id.new_zeros(len(pos_instance_ids))
            for i, id in enumerate(pos_instance_ids):
                if id in ref_gt_instance_id:
                    pos_match_id[i] = ref_gt_instance_id.tolist().index(id) + 1

            track_id_target = gt_instance_id.new_zeros(
                len(res.bboxes), dtype=torch.int64)
            track_id_target[:len(res.pos_bboxes)] = pos_match_id
            track_id_weight = res.bboxes.new_zeros(len(res.bboxes))
            track_id_weight[:len(res.pos_bboxes)] = 1.0

            track_id_targets.append(track_id_target)
            track_id_weights.append(track_id_weight)

        return track_id_targets, track_id_weights

    def loss(
        self,
        bbox_feats: Tensor,
        ref_bbox_feats: Tensor,
        num_bbox_per_img: int,
        num_bbox_per_ref_img: int,
        sampling_results: List[SamplingResult],
        gt_instance_ids: List[Tensor],
        ref_gt_instance_ids: List[Tensor],
        reduction_override: Optional[str] = None,
    ) -> dict:
        """Calculate the loss in a batch.

        Args:
            bbox_feats (Tensor): of shape [N, C, H, W]. N is the number of
                bboxes.
            ref_bbox_feats (Tensor): of shape [M, C, H, W]. M is the number of
                reference bboxes.
            num_bbox_per_img (list[int]): The `bbox_feats` contains proposals
                of multi-images. `num_bbox_per_img` denotes the number of
                proposals for each key image.
            num_bbox_per_ref_img (list[int]): The `ref_bbox_feats` contains
                proposals of multi-images. `num_bbox_per_ref_img` denotes the
                number of proposals for each reference image.
            sampling_results (List[obj:SamplingResult]): Assign results of
                all images in a batch after sampling.
            gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
                all images in a batch, each tensor has shape (num_gt, ).
            ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
                of all reference images in a batch, each tensor has shape
                (num_gt, ).
            reduction_override (str, optional): The method used to reduce the
                loss. Options are "none", "mean" and "sum".

        Returns:
            dict[str, Tensor]: a dictionary of loss components.
        """
        x_split, ref_x_split = self(bbox_feats, ref_bbox_feats,
                                    num_bbox_per_img, num_bbox_per_ref_img)

        losses = self.loss_by_feat(x_split, ref_x_split, sampling_results,
                                   gt_instance_ids, ref_gt_instance_ids,
                                   reduction_override)
        return losses

    def loss_by_feat(self,
                     x_split: Tuple[Tensor],
                     ref_x_split: Tuple[Tensor],
                     sampling_results: List[SamplingResult],
                     gt_instance_ids: List[Tensor],
                     ref_gt_instance_ids: List[Tensor],
                     reduction_override: Optional[str] = None) -> dict:
        """Calculate losses.

        Args:
            x_split (Tensor): The embed features belonging to key image.
            ref_x_split (Tensor): The embed features belonging to ref image.
            sampling_results (List[obj:SamplingResult]): Assign results of
                all images in a batch after sampling.
            gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes of
                all images in a batch, each tensor has shape (num_gt, ).
            ref_gt_instance_ids (list[Tensor]): The instance ids of gt_bboxes
                of all reference images in a batch, each tensor has shape
                (num_gt, ).
            reduction_override (str, optional): The method used to reduce the
                loss. Options are "none", "mean" and "sum".

        Returns:
            dict[str, Tensor]: a dictionary of loss components.
        """
        track_id_targets, track_id_weights = self.get_targets(
            sampling_results, gt_instance_ids, ref_gt_instance_ids)
        assert isinstance(track_id_targets, list)
        assert isinstance(track_id_weights, list)
        assert len(track_id_weights) == len(track_id_targets)

        losses = defaultdict(list)
        similarity_logits = []
        for one_x, one_ref_x in zip(x_split, ref_x_split):
            similarity_logit = embed_similarity(
                one_x, one_ref_x, method='dot_product')
            dummy = similarity_logit.new_zeros(one_x.shape[0], 1)
            similarity_logit = torch.cat((dummy, similarity_logit), dim=1)
            similarity_logits.append(similarity_logit)
        assert isinstance(similarity_logits, list)
        assert len(similarity_logits) == len(track_id_targets)

        for similarity_logit, track_id_target, track_id_weight in zip(
                similarity_logits, track_id_targets, track_id_weights):
            avg_factor = max(torch.sum(track_id_target > 0).float().item(), 1.)
            if similarity_logit.numel() > 0:
                loss_match = self.loss_match(
                    similarity_logit,
                    track_id_target,
                    track_id_weight,
                    avg_factor=avg_factor,
                    reduction_override=reduction_override)
                if isinstance(loss_match, dict):
                    for key, value in loss_match.items():
                        losses[key].append(value)
                else:
                    losses['loss_match'].append(loss_match)

                valid_index = track_id_weight > 0
                valid_similarity_logit = similarity_logit[valid_index]
                valid_track_id_target = track_id_target[valid_index]
                if self.custom_activation:
                    match_accuracy = self.loss_match.get_accuracy(
                        valid_similarity_logit, valid_track_id_target)
                    for key, value in match_accuracy.items():
                        losses[key].append(value)
                else:
                    losses['match_accuracy'].append(
                        accuracy(valid_similarity_logit,
                                 valid_track_id_target))

        for key, value in losses.items():
            losses[key] = sum(losses[key]) / len(similarity_logits)
        return losses

    def predict(self, roi_feats: Tensor,
                prev_roi_feats: Tensor) -> List[Tensor]:
        """Perform forward propagation of the tracking head and predict
        tracking results on the features of the upstream network.

        Args:
            roi_feats (Tensor): Feature map of current images rois.
            prev_roi_feats (Tensor): Feature map of previous images rois.

        Returns:
            list[Tensor]: The predicted similarity_logits of each pair of key
            image and reference image.
        """
        x_split, ref_x_split = self(roi_feats, prev_roi_feats,
                                    [roi_feats.shape[0]],
                                    [prev_roi_feats.shape[0]])

        similarity_logits = self.predict_by_feat(x_split, ref_x_split)

        return similarity_logits

    def predict_by_feat(self, x_split: Tuple[Tensor],
                        ref_x_split: Tuple[Tensor]) -> List[Tensor]:
        """Get similarity_logits.

        Args:
            x_split (Tensor): The embed features belonging to key image.
            ref_x_split (Tensor): The embed features belonging to ref image.

        Returns:
            list[Tensor]: The predicted similarity_logits of each pair of key
            image and reference image.
        """
        similarity_logits = []
        for one_x, one_ref_x in zip(x_split, ref_x_split):
            similarity_logit = embed_similarity(
                one_x, one_ref_x, method='dot_product')
            dummy = similarity_logit.new_zeros(one_x.shape[0], 1)
            similarity_logit = torch.cat((dummy, similarity_logit), dim=1)
            similarity_logits.append(similarity_logit)
        return similarity_logits