File size: 14,229 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional, Tuple

try:
    import lap
except ImportError:
    lap = None
import numpy as np
import torch
from mmengine.structures import InstanceData

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import (bbox_cxcyah_to_xyxy, bbox_overlaps,
                                   bbox_xyxy_to_cxcyah)
from .base_tracker import BaseTracker


@MODELS.register_module()
class ByteTracker(BaseTracker):
    """Tracker for ByteTrack.

    Args:
        motion (dict): Configuration of motion. Defaults to None.
        obj_score_thrs (dict): Detection score threshold for matching objects.
            - high (float): Threshold of the first matching. Defaults to 0.6.
            - low (float): Threshold of the second matching. Defaults to 0.1.
        init_track_thr (float): Detection score threshold for initializing a
            new tracklet. Defaults to 0.7.
        weight_iou_with_det_scores (bool): Whether using detection scores to
            weight IOU which is used for matching. Defaults to True.
        match_iou_thrs (dict): IOU distance threshold for matching between two
            frames.
            - high (float): Threshold of the first matching. Defaults to 0.1.
            - low (float): Threshold of the second matching. Defaults to 0.5.
            - tentative (float): Threshold of the matching for tentative
                tracklets. Defaults to 0.3.
        num_tentatives (int, optional): Number of continuous frames to confirm
            a track. Defaults to 3.
    """

    def __init__(self,
                 motion: Optional[dict] = None,
                 obj_score_thrs: dict = dict(high=0.6, low=0.1),
                 init_track_thr: float = 0.7,
                 weight_iou_with_det_scores: bool = True,
                 match_iou_thrs: dict = dict(high=0.1, low=0.5, tentative=0.3),
                 num_tentatives: int = 3,
                 **kwargs):
        super().__init__(**kwargs)

        if lap is None:
            raise RuntimeError('lap is not installed,\
                 please install it by: pip install lap')
        if motion is not None:
            self.motion = TASK_UTILS.build(motion)

        self.obj_score_thrs = obj_score_thrs
        self.init_track_thr = init_track_thr

        self.weight_iou_with_det_scores = weight_iou_with_det_scores
        self.match_iou_thrs = match_iou_thrs

        self.num_tentatives = num_tentatives

    @property
    def confirmed_ids(self) -> List:
        """Confirmed ids in the tracker."""
        ids = [id for id, track in self.tracks.items() if not track.tentative]
        return ids

    @property
    def unconfirmed_ids(self) -> List:
        """Unconfirmed ids in the tracker."""
        ids = [id for id, track in self.tracks.items() if track.tentative]
        return ids

    def init_track(self, id: int, obj: Tuple[torch.Tensor]) -> None:
        """Initialize a track."""
        super().init_track(id, obj)
        if self.tracks[id].frame_ids[-1] == 0:
            self.tracks[id].tentative = False
        else:
            self.tracks[id].tentative = True
        bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1])  # size = (1, 4)
        assert bbox.ndim == 2 and bbox.shape[0] == 1
        bbox = bbox.squeeze(0).cpu().numpy()
        self.tracks[id].mean, self.tracks[id].covariance = self.kf.initiate(
            bbox)

    def update_track(self, id: int, obj: Tuple[torch.Tensor]) -> None:
        """Update a track."""
        super().update_track(id, obj)
        if self.tracks[id].tentative:
            if len(self.tracks[id]['bboxes']) >= self.num_tentatives:
                self.tracks[id].tentative = False
        bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1])  # size = (1, 4)
        assert bbox.ndim == 2 and bbox.shape[0] == 1
        bbox = bbox.squeeze(0).cpu().numpy()
        track_label = self.tracks[id]['labels'][-1]
        label_idx = self.memo_items.index('labels')
        obj_label = obj[label_idx]
        assert obj_label == track_label
        self.tracks[id].mean, self.tracks[id].covariance = self.kf.update(
            self.tracks[id].mean, self.tracks[id].covariance, bbox)

    def pop_invalid_tracks(self, frame_id: int) -> None:
        """Pop out invalid tracks."""
        invalid_ids = []
        for k, v in self.tracks.items():
            # case1: disappeared frames >= self.num_frames_retrain
            case1 = frame_id - v['frame_ids'][-1] >= self.num_frames_retain
            # case2: tentative tracks but not matched in this frame
            case2 = v.tentative and v['frame_ids'][-1] != frame_id
            if case1 or case2:
                invalid_ids.append(k)
        for invalid_id in invalid_ids:
            self.tracks.pop(invalid_id)

    def assign_ids(
            self,
            ids: List[int],
            det_bboxes: torch.Tensor,
            det_labels: torch.Tensor,
            det_scores: torch.Tensor,
            weight_iou_with_det_scores: Optional[bool] = False,
            match_iou_thr: Optional[float] = 0.5
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Assign ids.

        Args:
            ids (list[int]): Tracking ids.
            det_bboxes (Tensor): of shape (N, 4)
            det_labels (Tensor): of shape (N,)
            det_scores (Tensor): of shape (N,)
            weight_iou_with_det_scores (bool, optional): Whether using
                detection scores to weight IOU which is used for matching.
                Defaults to False.
            match_iou_thr (float, optional): Matching threshold.
                Defaults to 0.5.

        Returns:
            tuple(np.ndarray, np.ndarray): The assigning ids.
        """
        # get track_bboxes
        track_bboxes = np.zeros((0, 4))
        for id in ids:
            track_bboxes = np.concatenate(
                (track_bboxes, self.tracks[id].mean[:4][None]), axis=0)
        track_bboxes = torch.from_numpy(track_bboxes).to(det_bboxes)
        track_bboxes = bbox_cxcyah_to_xyxy(track_bboxes)

        # compute distance
        ious = bbox_overlaps(track_bboxes, det_bboxes)
        if weight_iou_with_det_scores:
            ious *= det_scores
        # support multi-class association
        track_labels = torch.tensor([
            self.tracks[id]['labels'][-1] for id in ids
        ]).to(det_bboxes.device)

        cate_match = det_labels[None, :] == track_labels[:, None]
        # to avoid det and track of different categories are matched
        cate_cost = (1 - cate_match.int()) * 1e6

        dists = (1 - ious + cate_cost).cpu().numpy()

        # bipartite match
        if dists.size > 0:
            cost, row, col = lap.lapjv(
                dists, extend_cost=True, cost_limit=1 - match_iou_thr)
        else:
            row = np.zeros(len(ids)).astype(np.int32) - 1
            col = np.zeros(len(det_bboxes)).astype(np.int32) - 1
        return row, col

    def track(self, data_sample: DetDataSample, **kwargs) -> InstanceData:
        """Tracking forward function.

        Args:
            data_sample (:obj:`DetDataSample`): The data sample.
                It includes information such as `pred_instances`.

        Returns:
            :obj:`InstanceData`: Tracking results of the input images.
            Each InstanceData usually contains ``bboxes``, ``labels``,
            ``scores`` and ``instances_id``.
        """
        metainfo = data_sample.metainfo
        bboxes = data_sample.pred_instances.bboxes
        labels = data_sample.pred_instances.labels
        scores = data_sample.pred_instances.scores

        frame_id = metainfo.get('frame_id', -1)
        if frame_id == 0:
            self.reset()
        if not hasattr(self, 'kf'):
            self.kf = self.motion

        if self.empty or bboxes.size(0) == 0:
            valid_inds = scores > self.init_track_thr
            scores = scores[valid_inds]
            bboxes = bboxes[valid_inds]
            labels = labels[valid_inds]
            num_new_tracks = bboxes.size(0)
            ids = torch.arange(self.num_tracks,
                               self.num_tracks + num_new_tracks).to(labels)
            self.num_tracks += num_new_tracks

        else:
            # 0. init
            ids = torch.full((bboxes.size(0), ),
                             -1,
                             dtype=labels.dtype,
                             device=labels.device)

            # get the detection bboxes for the first association
            first_det_inds = scores > self.obj_score_thrs['high']
            first_det_bboxes = bboxes[first_det_inds]
            first_det_labels = labels[first_det_inds]
            first_det_scores = scores[first_det_inds]
            first_det_ids = ids[first_det_inds]

            # get the detection bboxes for the second association
            second_det_inds = (~first_det_inds) & (
                scores > self.obj_score_thrs['low'])
            second_det_bboxes = bboxes[second_det_inds]
            second_det_labels = labels[second_det_inds]
            second_det_scores = scores[second_det_inds]
            second_det_ids = ids[second_det_inds]

            # 1. use Kalman Filter to predict current location
            for id in self.confirmed_ids:
                # track is lost in previous frame
                if self.tracks[id].frame_ids[-1] != frame_id - 1:
                    self.tracks[id].mean[7] = 0
                (self.tracks[id].mean,
                 self.tracks[id].covariance) = self.kf.predict(
                     self.tracks[id].mean, self.tracks[id].covariance)

            # 2. first match
            first_match_track_inds, first_match_det_inds = self.assign_ids(
                self.confirmed_ids, first_det_bboxes, first_det_labels,
                first_det_scores, self.weight_iou_with_det_scores,
                self.match_iou_thrs['high'])
            # '-1' mean a detection box is not matched with tracklets in
            # previous frame
            valid = first_match_det_inds > -1
            first_det_ids[valid] = torch.tensor(
                self.confirmed_ids)[first_match_det_inds[valid]].to(labels)

            first_match_det_bboxes = first_det_bboxes[valid]
            first_match_det_labels = first_det_labels[valid]
            first_match_det_scores = first_det_scores[valid]
            first_match_det_ids = first_det_ids[valid]
            assert (first_match_det_ids > -1).all()

            first_unmatch_det_bboxes = first_det_bboxes[~valid]
            first_unmatch_det_labels = first_det_labels[~valid]
            first_unmatch_det_scores = first_det_scores[~valid]
            first_unmatch_det_ids = first_det_ids[~valid]
            assert (first_unmatch_det_ids == -1).all()

            # 3. use unmatched detection bboxes from the first match to match
            # the unconfirmed tracks
            (tentative_match_track_inds,
             tentative_match_det_inds) = self.assign_ids(
                 self.unconfirmed_ids, first_unmatch_det_bboxes,
                 first_unmatch_det_labels, first_unmatch_det_scores,
                 self.weight_iou_with_det_scores,
                 self.match_iou_thrs['tentative'])
            valid = tentative_match_det_inds > -1
            first_unmatch_det_ids[valid] = torch.tensor(self.unconfirmed_ids)[
                tentative_match_det_inds[valid]].to(labels)

            # 4. second match for unmatched tracks from the first match
            first_unmatch_track_ids = []
            for i, id in enumerate(self.confirmed_ids):
                # tracklet is not matched in the first match
                case_1 = first_match_track_inds[i] == -1
                # tracklet is not lost in the previous frame
                case_2 = self.tracks[id].frame_ids[-1] == frame_id - 1
                if case_1 and case_2:
                    first_unmatch_track_ids.append(id)

            second_match_track_inds, second_match_det_inds = self.assign_ids(
                first_unmatch_track_ids, second_det_bboxes, second_det_labels,
                second_det_scores, False, self.match_iou_thrs['low'])
            valid = second_match_det_inds > -1
            second_det_ids[valid] = torch.tensor(first_unmatch_track_ids)[
                second_match_det_inds[valid]].to(ids)

            # 5. gather all matched detection bboxes from step 2-4
            # we only keep matched detection bboxes in second match, which
            # means the id != -1
            valid = second_det_ids > -1
            bboxes = torch.cat(
                (first_match_det_bboxes, first_unmatch_det_bboxes), dim=0)
            bboxes = torch.cat((bboxes, second_det_bboxes[valid]), dim=0)

            labels = torch.cat(
                (first_match_det_labels, first_unmatch_det_labels), dim=0)
            labels = torch.cat((labels, second_det_labels[valid]), dim=0)

            scores = torch.cat(
                (first_match_det_scores, first_unmatch_det_scores), dim=0)
            scores = torch.cat((scores, second_det_scores[valid]), dim=0)

            ids = torch.cat((first_match_det_ids, first_unmatch_det_ids),
                            dim=0)
            ids = torch.cat((ids, second_det_ids[valid]), dim=0)

            # 6. assign new ids
            new_track_inds = ids == -1
            ids[new_track_inds] = torch.arange(
                self.num_tracks,
                self.num_tracks + new_track_inds.sum()).to(labels)
            self.num_tracks += new_track_inds.sum()

        self.update(
            ids=ids,
            bboxes=bboxes,
            scores=scores,
            labels=labels,
            frame_ids=frame_id)

        # update pred_track_instances
        pred_track_instances = InstanceData()
        pred_track_instances.bboxes = bboxes
        pred_track_instances.labels = labels
        pred_track_instances.scores = scores
        pred_track_instances.instances_id = ids

        return pred_track_instances