File size: 6,789 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np

try:
    from sklearn.gaussian_process import GaussianProcessRegressor as GPR
    from sklearn.gaussian_process.kernels import RBF
    HAS_SKIKIT_LEARN = True
except ImportError:
    HAS_SKIKIT_LEARN = False

from mmdet.registry import TASK_UTILS


@TASK_UTILS.register_module()
class InterpolateTracklets:
    """Interpolate tracks to make tracks more complete.

    Args:
        min_num_frames (int, optional): The minimum length of a track that will
            be interpolated. Defaults to 5.
        max_num_frames (int, optional): The maximum disconnected length in
            a track. Defaults to 20.
        use_gsi (bool, optional): Whether to use the GSI (Gaussian-smoothed
            interpolation) method. Defaults to False.
        smooth_tau (int, optional): smoothing parameter in GSI. Defaults to 10.
    """

    def __init__(self,
                 min_num_frames: int = 5,
                 max_num_frames: int = 20,
                 use_gsi: bool = False,
                 smooth_tau: int = 10):
        if not HAS_SKIKIT_LEARN:
            raise RuntimeError('sscikit-learn is not installed,\
                 please install it by: pip install scikit-learn')
        self.min_num_frames = min_num_frames
        self.max_num_frames = max_num_frames
        self.use_gsi = use_gsi
        self.smooth_tau = smooth_tau

    def _interpolate_track(self,
                           track: np.ndarray,
                           track_id: int,
                           max_num_frames: int = 20) -> np.ndarray:
        """Interpolate a track linearly to make the track more complete.

        This function is proposed in
        "ByteTrack: Multi-Object Tracking by Associating Every Detection Box."
        `ByteTrack<https://arxiv.org/abs/2110.06864>`_.

        Args:
            track (ndarray): With shape (N, 7). Each row denotes
                (frame_id, track_id, x1, y1, x2, y2, score).
            max_num_frames (int, optional): The maximum disconnected length in
                the track. Defaults to 20.

        Returns:
            ndarray: The interpolated track with shape (N, 7). Each row denotes
                (frame_id, track_id, x1, y1, x2, y2, score)
        """
        assert (track[:, 1] == track_id).all(), \
            'The track id should not changed when interpolate a track.'

        frame_ids = track[:, 0]
        interpolated_track = np.zeros((0, 7))
        # perform interpolation for the disconnected frames in the track.
        for i in np.where(np.diff(frame_ids) > 1)[0]:
            left_frame_id = frame_ids[i]
            right_frame_id = frame_ids[i + 1]
            num_disconnected_frames = int(right_frame_id - left_frame_id)

            if 1 < num_disconnected_frames < max_num_frames:
                left_bbox = track[i, 2:6]
                right_bbox = track[i + 1, 2:6]

                # perform interpolation for two adjacent tracklets.
                for j in range(1, num_disconnected_frames):
                    cur_bbox = j / (num_disconnected_frames) * (
                        right_bbox - left_bbox) + left_bbox
                    cur_result = np.ones((7, ))
                    cur_result[0] = j + left_frame_id
                    cur_result[1] = track_id
                    cur_result[2:6] = cur_bbox

                    interpolated_track = np.concatenate(
                        (interpolated_track, cur_result[None]), axis=0)

        interpolated_track = np.concatenate((track, interpolated_track),
                                            axis=0)
        return interpolated_track

    def gaussian_smoothed_interpolation(self,
                                        track: np.ndarray,
                                        smooth_tau: int = 10) -> np.ndarray:
        """Gaussian-Smoothed Interpolation.

        This function is proposed in
        "StrongSORT: Make DeepSORT Great Again"
        `StrongSORT<https://arxiv.org/abs/2202.13514>`_.

        Args:
            track (ndarray): With shape (N, 7). Each row denotes
                (frame_id, track_id, x1, y1, x2, y2, score).
            smooth_tau (int, optional): smoothing parameter in GSI.
                Defaults to 10.

        Returns:
            ndarray: The interpolated tracks with shape (N, 7). Each row
                denotes (frame_id, track_id, x1, y1, x2, y2, score)
        """
        len_scale = np.clip(smooth_tau * np.log(smooth_tau**3 / len(track)),
                            smooth_tau**-1, smooth_tau**2)
        gpr = GPR(RBF(len_scale, 'fixed'))
        t = track[:, 0].reshape(-1, 1)
        x1 = track[:, 2].reshape(-1, 1)
        y1 = track[:, 3].reshape(-1, 1)
        x2 = track[:, 4].reshape(-1, 1)
        y2 = track[:, 5].reshape(-1, 1)
        gpr.fit(t, x1)
        x1_gpr = gpr.predict(t)
        gpr.fit(t, y1)
        y1_gpr = gpr.predict(t)
        gpr.fit(t, x2)
        x2_gpr = gpr.predict(t)
        gpr.fit(t, y2)
        y2_gpr = gpr.predict(t)
        gsi_track = [[
            t[i, 0], track[i, 1], x1_gpr[i], y1_gpr[i], x2_gpr[i], y2_gpr[i],
            track[i, 6]
        ] for i in range(len(t))]
        return np.array(gsi_track)

    def forward(self, pred_tracks: np.ndarray) -> np.ndarray:
        """Forward function.

        pred_tracks (ndarray): With shape (N, 7). Each row denotes
            (frame_id, track_id, x1, y1, x2, y2, score).

        Returns:
            ndarray: The interpolated tracks with shape (N, 7). Each row
            denotes (frame_id, track_id, x1, y1, x2, y2, score).
        """
        max_track_id = int(np.max(pred_tracks[:, 1]))
        min_track_id = int(np.min(pred_tracks[:, 1]))

        # perform interpolation for each track
        interpolated_tracks = []
        for track_id in range(min_track_id, max_track_id + 1):
            inds = pred_tracks[:, 1] == track_id
            track = pred_tracks[inds]
            num_frames = len(track)
            if num_frames <= 2:
                continue

            if num_frames > self.min_num_frames:
                interpolated_track = self._interpolate_track(
                    track, track_id, self.max_num_frames)
            else:
                interpolated_track = track

            if self.use_gsi:
                interpolated_track = self.gaussian_smoothed_interpolation(
                    interpolated_track, self.smooth_tau)

            interpolated_tracks.append(interpolated_track)

        interpolated_tracks = np.concatenate(interpolated_tracks)
        return interpolated_tracks[interpolated_tracks[:, 0].argsort()]