File size: 19,379 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from abc import abstractmethod
from typing import Optional, Union

import torch
import torch.nn.functional as F
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps, bbox_xyxy_to_cxcywh


class BaseMatchCost:
    """Base match cost class.

    Args:
        weight (Union[float, int]): Cost weight. Defaults to 1.
    """

    def __init__(self, weight: Union[float, int] = 1.) -> None:
        self.weight = weight

    @abstractmethod
    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be anchors or points, or the bboxes predicted by the
                previous stage, has shape (n, 4). The bboxes predicted by
                the current model or stage will be named ``bboxes``,
                ``labels``, and ``scores``, the same as the ``InstanceData``
                in other places.
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes``, with shape (k, 4),
                and ``labels``, with shape (k, ).
            img_meta (dict, optional): Image information.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pass


@TASK_UTILS.register_module()
class BBoxL1Cost(BaseMatchCost):
    """BBoxL1Cost.

    Note: ``bboxes`` in ``InstanceData`` passed in is of format 'xyxy'
    and its coordinates are unnormalized.

    Args:
        box_format (str, optional): 'xyxy' for DETR, 'xywh' for Sparse_RCNN.
            Defaults to 'xyxy'.
        weight (Union[float, int]): Cost weight. Defaults to 1.

    Examples:
        >>> from mmdet.models.task_modules.assigners.
        ... match_costs.match_cost import BBoxL1Cost
        >>> import torch
        >>> self = BBoxL1Cost()
        >>> bbox_pred = torch.rand(1, 4)
        >>> gt_bboxes= torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
        >>> factor = torch.tensor([10, 8, 10, 8])
        >>> self(bbox_pred, gt_bboxes, factor)
        tensor([[1.6172, 1.6422]])
    """

    def __init__(self,
                 box_format: str = 'xyxy',
                 weight: Union[float, int] = 1.) -> None:
        super().__init__(weight=weight)
        assert box_format in ['xyxy', 'xywh']
        self.box_format = box_format

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): ``bboxes`` inside is
                predicted boxes with unnormalized coordinate
                (x, y, x, y).
            gt_instances (:obj:`InstanceData`): ``bboxes`` inside is gt
                bboxes with unnormalized coordinate (x, y, x, y).
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pred_bboxes = pred_instances.bboxes
        gt_bboxes = gt_instances.bboxes

        # convert box format
        if self.box_format == 'xywh':
            gt_bboxes = bbox_xyxy_to_cxcywh(gt_bboxes)
            pred_bboxes = bbox_xyxy_to_cxcywh(pred_bboxes)

        # normalized
        img_h, img_w = img_meta['img_shape']
        factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        gt_bboxes = gt_bboxes / factor
        pred_bboxes = pred_bboxes / factor

        bbox_cost = torch.cdist(pred_bboxes, gt_bboxes, p=1)
        return bbox_cost * self.weight


@TASK_UTILS.register_module()
class IoUCost(BaseMatchCost):
    """IoUCost.

    Note: ``bboxes`` in ``InstanceData`` passed in is of format 'xyxy'
    and its coordinates are unnormalized.

    Args:
        iou_mode (str): iou mode such as 'iou', 'giou'. Defaults to 'giou'.
        weight (Union[float, int]): Cost weight. Defaults to 1.

    Examples:
        >>> from mmdet.models.task_modules.assigners.
        ... match_costs.match_cost import IoUCost
        >>> import torch
        >>> self = IoUCost()
        >>> bboxes = torch.FloatTensor([[1,1, 2, 2], [2, 2, 3, 4]])
        >>> gt_bboxes = torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
        >>> self(bboxes, gt_bboxes)
        tensor([[-0.1250,  0.1667],
            [ 0.1667, -0.5000]])
    """

    def __init__(self, iou_mode: str = 'giou', weight: Union[float, int] = 1.):
        super().__init__(weight=weight)
        self.iou_mode = iou_mode

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs):
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): ``bboxes`` inside is
                predicted boxes with unnormalized coordinate
                (x, y, x, y).
            gt_instances (:obj:`InstanceData`): ``bboxes`` inside is gt
                bboxes with unnormalized coordinate (x, y, x, y).
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pred_bboxes = pred_instances.bboxes
        gt_bboxes = gt_instances.bboxes

        # avoid fp16 overflow
        if pred_bboxes.dtype == torch.float16:
            fp16 = True
            pred_bboxes = pred_bboxes.to(torch.float32)
        else:
            fp16 = False

        overlaps = bbox_overlaps(
            pred_bboxes, gt_bboxes, mode=self.iou_mode, is_aligned=False)

        if fp16:
            overlaps = overlaps.to(torch.float16)

        # The 1 is a constant that doesn't change the matching, so omitted.
        iou_cost = -overlaps
        return iou_cost * self.weight


@TASK_UTILS.register_module()
class ClassificationCost(BaseMatchCost):
    """ClsSoftmaxCost.

    Args:
        weight (Union[float, int]): Cost weight. Defaults to 1.

    Examples:
        >>> from mmdet.models.task_modules.assigners.
        ...  match_costs.match_cost import ClassificationCost
        >>> import torch
        >>> self = ClassificationCost()
        >>> cls_pred = torch.rand(4, 3)
        >>> gt_labels = torch.tensor([0, 1, 2])
        >>> factor = torch.tensor([10, 8, 10, 8])
        >>> self(cls_pred, gt_labels)
        tensor([[-0.3430, -0.3525, -0.3045],
            [-0.3077, -0.2931, -0.3992],
            [-0.3664, -0.3455, -0.2881],
            [-0.3343, -0.2701, -0.3956]])
    """

    def __init__(self, weight: Union[float, int] = 1) -> None:
        super().__init__(weight=weight)

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): ``scores`` inside is
                predicted classification logits, of shape
                (num_queries, num_class).
            gt_instances (:obj:`InstanceData`): ``labels`` inside should have
                shape (num_gt, ).
            img_meta (Optional[dict]): _description_. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pred_scores = pred_instances.scores
        gt_labels = gt_instances.labels

        pred_scores = pred_scores.softmax(-1)
        cls_cost = -pred_scores[:, gt_labels]

        return cls_cost * self.weight


@TASK_UTILS.register_module()
class FocalLossCost(BaseMatchCost):
    """FocalLossCost.

    Args:
        alpha (Union[float, int]): focal_loss alpha. Defaults to 0.25.
        gamma (Union[float, int]): focal_loss gamma. Defaults to 2.
        eps (float): Defaults to 1e-12.
        binary_input (bool): Whether the input is binary. Currently,
            binary_input = True is for masks input, binary_input = False
            is for label input. Defaults to False.
        weight (Union[float, int]): Cost weight. Defaults to 1.
    """

    def __init__(self,
                 alpha: Union[float, int] = 0.25,
                 gamma: Union[float, int] = 2,
                 eps: float = 1e-12,
                 binary_input: bool = False,
                 weight: Union[float, int] = 1.) -> None:
        super().__init__(weight=weight)
        self.alpha = alpha
        self.gamma = gamma
        self.eps = eps
        self.binary_input = binary_input

    def _focal_loss_cost(self, cls_pred: Tensor, gt_labels: Tensor) -> Tensor:
        """
        Args:
            cls_pred (Tensor): Predicted classification logits, shape
                (num_queries, num_class).
            gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).

        Returns:
            torch.Tensor: cls_cost value with weight
        """
        cls_pred = cls_pred.sigmoid()
        neg_cost = -(1 - cls_pred + self.eps).log() * (
            1 - self.alpha) * cls_pred.pow(self.gamma)
        pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
            1 - cls_pred).pow(self.gamma)

        cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels]
        return cls_cost * self.weight

    def _mask_focal_loss_cost(self, cls_pred, gt_labels) -> Tensor:
        """
        Args:
            cls_pred (Tensor): Predicted classification logits.
                in shape (num_queries, d1, ..., dn), dtype=torch.float32.
            gt_labels (Tensor): Ground truth in shape (num_gt, d1, ..., dn),
                dtype=torch.long. Labels should be binary.

        Returns:
            Tensor: Focal cost matrix with weight in shape\
                (num_queries, num_gt).
        """
        cls_pred = cls_pred.flatten(1)
        gt_labels = gt_labels.flatten(1).float()
        n = cls_pred.shape[1]
        cls_pred = cls_pred.sigmoid()
        neg_cost = -(1 - cls_pred + self.eps).log() * (
            1 - self.alpha) * cls_pred.pow(self.gamma)
        pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
            1 - cls_pred).pow(self.gamma)

        cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \
            torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels))
        return cls_cost / n * self.weight

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): Predicted instances which
                must contain ``scores`` or ``masks``.
            gt_instances (:obj:`InstanceData`): Ground truth which must contain
                ``labels`` or ``mask``.
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        if self.binary_input:
            pred_masks = pred_instances.masks
            gt_masks = gt_instances.masks
            return self._mask_focal_loss_cost(pred_masks, gt_masks)
        else:
            pred_scores = pred_instances.scores
            gt_labels = gt_instances.labels
            return self._focal_loss_cost(pred_scores, gt_labels)


@TASK_UTILS.register_module()
class BinaryFocalLossCost(FocalLossCost):

    def _focal_loss_cost(self, cls_pred: Tensor, gt_labels: Tensor) -> Tensor:
        """
        Args:
            cls_pred (Tensor): Predicted classification logits, shape
                (num_queries, num_class).
            gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).

        Returns:
            torch.Tensor: cls_cost value with weight
        """
        cls_pred = cls_pred.flatten(1)
        gt_labels = gt_labels.flatten(1).float()
        cls_pred = cls_pred.sigmoid()
        neg_cost = -(1 - cls_pred + self.eps).log() * (
            1 - self.alpha) * cls_pred.pow(self.gamma)
        pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
            1 - cls_pred).pow(self.gamma)

        cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \
            torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels))
        return cls_cost * self.weight

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): Predicted instances which
                must contain ``scores`` or ``masks``.
            gt_instances (:obj:`InstanceData`): Ground truth which must contain
                ``labels`` or ``mask``.
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        # gt_instances.text_token_mask is a repeated tensor of the same length
        # of instances. Only gt_instances.text_token_mask[0] is useful
        text_token_mask = torch.nonzero(
            gt_instances.text_token_mask[0]).squeeze(-1)
        pred_scores = pred_instances.scores[:, text_token_mask]
        gt_labels = gt_instances.positive_maps[:, text_token_mask]
        return self._focal_loss_cost(pred_scores, gt_labels)


@TASK_UTILS.register_module()
class DiceCost(BaseMatchCost):
    """Cost of mask assignments based on dice losses.

    Args:
        pred_act (bool): Whether to apply sigmoid to mask_pred.
            Defaults to False.
        eps (float): Defaults to 1e-3.
        naive_dice (bool): If True, use the naive dice loss
            in which the power of the number in the denominator is
            the first power. If False, use the second power that
            is adopted by K-Net and SOLO. Defaults to True.
        weight (Union[float, int]): Cost weight. Defaults to 1.
    """

    def __init__(self,
                 pred_act: bool = False,
                 eps: float = 1e-3,
                 naive_dice: bool = True,
                 weight: Union[float, int] = 1.) -> None:
        super().__init__(weight=weight)
        self.pred_act = pred_act
        self.eps = eps
        self.naive_dice = naive_dice

    def _binary_mask_dice_loss(self, mask_preds: Tensor,
                               gt_masks: Tensor) -> Tensor:
        """
        Args:
            mask_preds (Tensor): Mask prediction in shape (num_queries, *).
            gt_masks (Tensor): Ground truth in shape (num_gt, *)
                store 0 or 1, 0 for negative class and 1 for
                positive class.

        Returns:
            Tensor: Dice cost matrix in shape (num_queries, num_gt).
        """
        mask_preds = mask_preds.flatten(1)
        gt_masks = gt_masks.flatten(1).float()
        numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks)
        if self.naive_dice:
            denominator = mask_preds.sum(-1)[:, None] + \
                          gt_masks.sum(-1)[None, :]
        else:
            denominator = mask_preds.pow(2).sum(1)[:, None] + \
                          gt_masks.pow(2).sum(1)[None, :]
        loss = 1 - (numerator + self.eps) / (denominator + self.eps)
        return loss

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): Predicted instances which
                must contain ``masks``.
            gt_instances (:obj:`InstanceData`): Ground truth which must contain
                ``mask``.
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pred_masks = pred_instances.masks
        gt_masks = gt_instances.masks

        if self.pred_act:
            pred_masks = pred_masks.sigmoid()
        dice_cost = self._binary_mask_dice_loss(pred_masks, gt_masks)
        return dice_cost * self.weight


@TASK_UTILS.register_module()
class CrossEntropyLossCost(BaseMatchCost):
    """CrossEntropyLossCost.

    Args:
        use_sigmoid (bool): Whether the prediction uses sigmoid
                of softmax. Defaults to True.
        weight (Union[float, int]): Cost weight. Defaults to 1.
    """

    def __init__(self,
                 use_sigmoid: bool = True,
                 weight: Union[float, int] = 1.) -> None:
        super().__init__(weight=weight)
        self.use_sigmoid = use_sigmoid

    def _binary_cross_entropy(self, cls_pred: Tensor,
                              gt_labels: Tensor) -> Tensor:
        """
        Args:
            cls_pred (Tensor): The prediction with shape (num_queries, 1, *) or
                (num_queries, *).
            gt_labels (Tensor): The learning label of prediction with
                shape (num_gt, *).

        Returns:
            Tensor: Cross entropy cost matrix in shape (num_queries, num_gt).
        """
        cls_pred = cls_pred.flatten(1).float()
        gt_labels = gt_labels.flatten(1).float()
        n = cls_pred.shape[1]
        pos = F.binary_cross_entropy_with_logits(
            cls_pred, torch.ones_like(cls_pred), reduction='none')
        neg = F.binary_cross_entropy_with_logits(
            cls_pred, torch.zeros_like(cls_pred), reduction='none')
        cls_cost = torch.einsum('nc,mc->nm', pos, gt_labels) + \
            torch.einsum('nc,mc->nm', neg, 1 - gt_labels)
        cls_cost = cls_cost / n

        return cls_cost

    def __call__(self,
                 pred_instances: InstanceData,
                 gt_instances: InstanceData,
                 img_meta: Optional[dict] = None,
                 **kwargs) -> Tensor:
        """Compute match cost.

        Args:
            pred_instances (:obj:`InstanceData`): Predicted instances which
                must contain ``scores`` or ``masks``.
            gt_instances (:obj:`InstanceData`): Ground truth which must contain
                ``labels`` or ``masks``.
            img_meta (Optional[dict]): Image information. Defaults to None.

        Returns:
            Tensor: Match Cost matrix of shape (num_preds, num_gts).
        """
        pred_masks = pred_instances.masks
        gt_masks = gt_instances.masks
        if self.use_sigmoid:
            cls_cost = self._binary_cross_entropy(pred_masks, gt_masks)
        else:
            raise NotImplementedError

        return cls_cost * self.weight